Question Number 122159 by mnjuly1970 last updated on 14/Nov/20

Answered by mathmax by abdo last updated on 14/Nov/20
![Ω =∫_0 ^(π/2) (arctan(ptanx)dx−∫_0 ^(π/2) arctan(qtanx)dx =A_p −A_q A_p =∫_0 ^(π/2) arctan(ptanx)dx =_(tanx=t) ∫_0 ^∞ ((arctan(pt))/(1+t^2 ))dt =f(p) f^′ (p) =∫_0 ^∞ (t/((1+p^2 t^2 )(1+t^2 )))dt =_(pt=x) ∫_0 ^∞ (x/(p(1+x^2 )(1+(x^2 /p^2 ))))(dx/p) =∫_0 ^∞ ((xdx)/((x^2 +1)(x^2 +p^2 ))) let decompose F(x)=(x/((x^2 +1)(x^2 +p^2 ))) F(x)=((ax+b)/(x^2 +1)) +((cx +d)/(x^2 +p^2 )) F(−x)=−f(x) ⇒((−ax+b)/(x^2 +1)) +((−cx+d)/(x^2 +p^2 )) =((−ax−b)/(x^2 +1))+((−cx−d)/(x^2 +p^2 )) ⇒b=d=0 ⇒F(x) =((ax)/(x^2 +1))+((cx)/(x^2 +p^2 )) lim_(x→+∞) xF(x)=0 =a+c ⇒c=−a ⇒ F(x)=((ax)/(x^2 +1))−((ax)/(x^2 +p^2 )) F(1)=(1/(2(p^2 +1))) =(a/2)−(a/(p^2 +1)) ⇒((1/2)−(1/(p^2 +1)))a =(1/(2(p^2 +1))) ⇒ ((p^2 −1)/(2(p^2 +1)))a =(1/(2(p^2 +1))) ⇒a =(1/(p^2 −1)) ⇒F(x)=(1/(p^2 −1)){(x/(x^2 +1))−(x/(x^2 +p^2 ))} ⇒ f^, (p) =(1/(p^2 −1))∫_0 ^∞ {(x/(x^2 +1))−(x/(x^2 +p^2 ))}dx =(1/(p^2 −1))×(1/2)[ln∣((x^2 +1)/(x^2 +p^2 ))∣]_0 ^∞ =(1/(2(p^2 −1)))(−2lnp) =−((lnp)/(p^2 −1)) =((lnp)/(1−p^2 )) ⇒ f(p) =∫_1 ^p ((lnt)/(1−t^2 ))dt +c c =f(1) =∫_0 ^∞ ((arctant)/(1+t^2 )) =[arctan^2 t]_0 ^∞ −∫_0 ^∞ ((arctant)/(1+t^2 ))dt ⇒ 2c =((π/2))^2 =(π^2 /4) ⇒c =(π^2 /8) ⇒f(p) =∫_1 ^p ((lnt)/(1−t^2 ))dt +(π^2 /8) if p<1 ⇒∫_1 ^p ((lnt)/(1−t^2 ))dt =−∫_p ^1 ((lnt)/(1−t^2 )) =−∫_p ^1 lntΣ_(n=0) ^∞ t^(2n) dt =−Σ_(n=0) ^∞ ∫_p ^1 t^(2n) lnt dt =−Σ_(n=0) ^∞ u_n u_n =[(t^(2n+1) /(2n+1))lnt]_p ^1 −∫_p ^1 (t^(2n+1) /(2n+1))(dt/t) =−(p^(2n+1) /(2n+1))−(1/(2n+1))∫_p ^1 t^(2n) dt =−(p^(2n+1) /(2n+1))−(1/((2n+1)^2 ))[t^(2n+1) ]_p ^1 =−(p^(2n+1) /(2n+1))−(1/((2n+1)^2 ))(1−p^(2n+1) ) ⇒ ∫_1 ^p ((lnt)/(1−t^2 ))dt =Σ_(n=0) ^∞ (p^(2n+1) /(2n+1)) +Σ_(n=0) ^∞ ((1−p^(2n+1) )/((2n+1)^2 ))....becontinued...](https://www.tinkutara.com/question/Q122165.png)
Answered by mindispower last updated on 14/Nov/20

Commented by mnjuly1970 last updated on 14/Nov/20

Answered by mindispower last updated on 14/Nov/20
![∫_0 ^(π/2) {tan^− (t.tan(x))}{tan(x)+cot(x)}dx=f(t) =∫_0 ^(π/2) {tan^− (t.tan(x)){((1+tan^2 (x))/(tan(x)))}dx,tan(x)=s ⇔ =∫_0 ^∞ tan^− (ts).(ds/s) f(p)−f(q)=∫_0 ^∞ (tan^− (ps)−tan^− (qs))(ds/s) =[(tan^− (ps)−tan^− (qs))ln(x)]_0 ^∞ −∫_0 ^∞ {p((ln(s))/(1+p^2 s2))−q((ln(s))/(1+q^2 s^2 ))}ds tan^− (ps)−tan^− (qs)=((π/2)−(1/(ps))+o((1/s))−((π/2)−(1/(qs))+o((1/s))) =(1/s)((1/q)−(1/p))+o((1/s))⇒lim_(x→∞) ln(x){tan^− (ps)−tan^− (qs)}=0 ⇔ f(p)−f(q)=−∫_0 ^∞ ((pln(s))/(1+p^2 s2))−((qln(s))/(1+q^2 s^2 ))ds=−(g(p)−g(q)) g(z)=∫_0 ^∞ ((zln(x))/(1+z^2 x^2 ))dx,z>0 withe Quation llet zx=t ⇔g(z)=∫_0 ^∞ ((ln(t)−ln(z))/(1+t^2 ))dt =∫_0 ^∞ ((ln(t))/(1+t^2 ))dt_(=0) −ln(z)∫_0 ^∞ (dt/(1+t^2 )) =−ln(z)[tan^(−1) (t)]_0 ^∞ =−(π/2)ln(z) ∫_0 ^∞ {tan^(−1) (ptan(x))−tan^− (qtan(x)}(tan(x)+cot(x))dx =−g(p)+g(q)=(π/2)ln(p)−(π/2)ln(q)=(π/2)ln((p/q))](https://www.tinkutara.com/question/Q122215.png)