Menu Close

nice-calculus-prove-that-0-pi-2-tan-1-ptan-x-tan-1-qtan-x-tan-x-cot-x-dx-pi-2-log-p-q-p-q-gt-0-m-n-




Question Number 122159 by mnjuly1970 last updated on 14/Nov/20
     ... nice  calculus...     prove  that::  Ω=∫_0 ^( (π/2)) {tan^(−1) (ptan(x))−tan^(−1) (qtan(x))}(tan(x)+cot(x))dx  =(π/2) log((p/q))   (    p , q >0   )      m.n.
nicecalculusprovethat::Ω=0π2{tan1(ptan(x))tan1(qtan(x))}(tan(x)+cot(x))dx=π2log(pq)(p,q>0)m.n.
Answered by mathmax by abdo last updated on 14/Nov/20
Ω =∫_0 ^(π/2) (arctan(ptanx)dx−∫_0 ^(π/2)  arctan(qtanx)dx  =A_p −A_q   A_p =∫_0 ^(π/2)  arctan(ptanx)dx =_(tanx=t)    ∫_0 ^∞   ((arctan(pt))/(1+t^2 ))dt =f(p)  f^′ (p) =∫_0 ^∞   (t/((1+p^2 t^2 )(1+t^2 )))dt =_(pt=x)    ∫_0 ^∞    (x/(p(1+x^2 )(1+(x^2 /p^2 ))))(dx/p)  =∫_0 ^∞    ((xdx)/((x^2 +1)(x^2 +p^2 ))) let decompose F(x)=(x/((x^2 +1)(x^2 +p^2 )))  F(x)=((ax+b)/(x^2 +1)) +((cx +d)/(x^2  +p^2 ))  F(−x)=−f(x) ⇒((−ax+b)/(x^2 +1)) +((−cx+d)/(x^2  +p^2 )) =((−ax−b)/(x^2  +1))+((−cx−d)/(x^2  +p^2 ))  ⇒b=d=0 ⇒F(x) =((ax)/(x^2 +1))+((cx)/(x^2  +p^2 ))  lim_(x→+∞) xF(x)=0 =a+c ⇒c=−a ⇒  F(x)=((ax)/(x^2 +1))−((ax)/(x^2  +p^2 ))  F(1)=(1/(2(p^2 +1))) =(a/2)−(a/(p^2 +1)) ⇒((1/2)−(1/(p^2 +1)))a =(1/(2(p^2  +1))) ⇒  ((p^2 −1)/(2(p^2 +1)))a =(1/(2(p^2 +1))) ⇒a =(1/(p^2 −1)) ⇒F(x)=(1/(p^2 −1)){(x/(x^2 +1))−(x/(x^2  +p^2 ))} ⇒  f^, (p) =(1/(p^2 −1))∫_0 ^∞ {(x/(x^2 +1))−(x/(x^2 +p^2 ))}dx  =(1/(p^2 −1))×(1/2)[ln∣((x^2 +1)/(x^2 +p^2 ))∣]_0 ^∞  =(1/(2(p^2 −1)))(−2lnp) =−((lnp)/(p^2 −1)) =((lnp)/(1−p^2 ))  ⇒ f(p) =∫_1 ^p   ((lnt)/(1−t^2 ))dt +c  c =f(1) =∫_0 ^∞   ((arctant)/(1+t^2 )) =[arctan^2 t]_0 ^∞ −∫_0 ^∞  ((arctant)/(1+t^2 ))dt ⇒  2c =((π/2))^2  =(π^2 /4) ⇒c =(π^2 /8) ⇒f(p) =∫_1 ^p  ((lnt)/(1−t^2 ))dt +(π^2 /8)  if p<1 ⇒∫_1 ^p  ((lnt)/(1−t^2 ))dt =−∫_p ^1  ((lnt)/(1−t^2 )) =−∫_p ^1 lntΣ_(n=0) ^∞  t^(2n)  dt  =−Σ_(n=0) ^∞  ∫_p ^1 t^(2n)  lnt dt  =−Σ_(n=0) ^∞  u_n   u_n =[(t^(2n+1) /(2n+1))lnt]_p ^1 −∫_p ^1  (t^(2n+1) /(2n+1))(dt/t) =−(p^(2n+1) /(2n+1))−(1/(2n+1))∫_p ^1 t^(2n) dt  =−(p^(2n+1) /(2n+1))−(1/((2n+1)^2 ))[t^(2n+1) ]_p ^1  =−(p^(2n+1) /(2n+1))−(1/((2n+1)^2 ))(1−p^(2n+1) ) ⇒  ∫_1 ^p  ((lnt)/(1−t^2 ))dt =Σ_(n=0) ^∞  (p^(2n+1) /(2n+1)) +Σ_(n=0) ^∞  ((1−p^(2n+1) )/((2n+1)^2 ))....becontinued...
Ω=0π2(arctan(ptanx)dx0π2arctan(qtanx)dx=ApAqAp=0π2arctan(ptanx)dx=tanx=t0arctan(pt)1+t2dt=f(p)f(p)=0t(1+p2t2)(1+t2)dt=pt=x0xp(1+x2)(1+x2p2)dxp=0xdx(x2+1)(x2+p2)letdecomposeF(x)=x(x2+1)(x2+p2)F(x)=ax+bx2+1+cx+dx2+p2F(x)=f(x)ax+bx2+1+cx+dx2+p2=axbx2+1+cxdx2+p2b=d=0F(x)=axx2+1+cxx2+p2limx+xF(x)=0=a+cc=aF(x)=axx2+1axx2+p2F(1)=12(p2+1)=a2ap2+1(121p2+1)a=12(p2+1)p212(p2+1)a=12(p2+1)a=1p21F(x)=1p21{xx2+1xx2+p2}f,(p)=1p210{xx2+1xx2+p2}dx=1p21×12[lnx2+1x2+p2]0=12(p21)(2lnp)=lnpp21=lnp1p2f(p)=1plnt1t2dt+cc=f(1)=0arctant1+t2=[arctan2t]00arctant1+t2dt2c=(π2)2=π24c=π28f(p)=1plnt1t2dt+π28ifp<11plnt1t2dt=p1lnt1t2=p1lntn=0t2ndt=n=0p1t2nlntdt=n=0unun=[t2n+12n+1lnt]p1p1t2n+12n+1dtt=p2n+12n+112n+1p1t2ndt=p2n+12n+11(2n+1)2[t2n+1]p1=p2n+12n+11(2n+1)2(1p2n+1)1plnt1t2dt=n=0p2n+12n+1+n=01p2n+1(2n+1)2.becontinued
Answered by mindispower last updated on 14/Nov/20
not true sir  q=1⇒∫_0 ^(π/2) tan^− (ptan(x))−xdx=(π/2)ln(p)  tak p→∞⇒  ∫_0 ^(π/2) tan^− (ptan(x))−x  dx=I→+∞  but tan^− (z)<(π/2)⇒  I≤∫_0 ^(π/2) ((π/2)−x)dx=(π^2 /8)
nottruesirq=10π2tan(ptan(x))xdx=π2ln(p)takp0π2tan(ptan(x))xdx=I+buttan(z)<π2I0π2(π2x)dx=π28
Commented by mnjuly1970 last updated on 14/Nov/20
thank you   corrected
thankyoucorrected
Answered by mindispower last updated on 14/Nov/20
∫_0 ^(π/2) {tan^− (t.tan(x))}{tan(x)+cot(x)}dx=f(t)  =∫_0 ^(π/2) {tan^− (t.tan(x)){((1+tan^2 (x))/(tan(x)))}dx,tan(x)=s  ⇔  =∫_0 ^∞ tan^− (ts).(ds/s)  f(p)−f(q)=∫_0 ^∞ (tan^− (ps)−tan^− (qs))(ds/s)  =[(tan^− (ps)−tan^− (qs))ln(x)]_0 ^∞ −∫_0 ^∞ {p((ln(s))/(1+p^2 s2))−q((ln(s))/(1+q^2 s^2 ))}ds  tan^− (ps)−tan^− (qs)=((π/2)−(1/(ps))+o((1/s))−((π/2)−(1/(qs))+o((1/s)))  =(1/s)((1/q)−(1/p))+o((1/s))⇒lim_(x→∞) ln(x){tan^− (ps)−tan^− (qs)}=0  ⇔  f(p)−f(q)=−∫_0 ^∞ ((pln(s))/(1+p^2 s2))−((qln(s))/(1+q^2 s^2 ))ds=−(g(p)−g(q))  g(z)=∫_0 ^∞ ((zln(x))/(1+z^2 x^2 ))dx,z>0 withe Quation  llet zx=t  ⇔g(z)=∫_0 ^∞ ((ln(t)−ln(z))/(1+t^2 ))dt  =∫_0 ^∞ ((ln(t))/(1+t^2 ))dt_(=0) −ln(z)∫_0 ^∞ (dt/(1+t^2 ))  =−ln(z)[tan^(−1) (t)]_0 ^∞ =−(π/2)ln(z)  ∫_0 ^∞ {tan^(−1) (ptan(x))−tan^− (qtan(x)}(tan(x)+cot(x))dx  =−g(p)+g(q)=(π/2)ln(p)−(π/2)ln(q)=(π/2)ln((p/q))
0π2{tan(t.tan(x))}{tan(x)+cot(x)}dx=f(t)=0π2{tan(t.tan(x)){1+tan2(x)tan(x)}dx,tan(x)=s=0tan(ts).dssf(p)f(q)=0(tan(ps)tan(qs))dss=[(tan(ps)tan(qs))ln(x)]00{pln(s)1+p2s2qln(s)1+q2s2}dstan(ps)tan(qs)=(π21ps+o(1s)(π21qs+o(1s))=1s(1q1p)+o(1s)limxln(x){tan(ps)tan(qs)}=0f(p)f(q)=0pln(s)1+p2s2qln(s)1+q2s2ds=(g(p)g(q))g(z)=0zln(x)1+z2x2dx,z>0witheQuationlletzx=tg(z)=0ln(t)ln(z)1+t2dt=0ln(t)1+t2dt=0ln(z)0dt1+t2=ln(z)[tan1(t)]0=π2ln(z)0{tan1(ptan(x))tan(qtan(x)}(tan(x)+cot(x))dx=g(p)+g(q)=π2ln(p)π2ln(q)=π2ln(pq)

Leave a Reply

Your email address will not be published. Required fields are marked *