Menu Close

nice-calculus-prove-that-0-pi-4-ln-sin-x-d-pi-4-log-2-G-2-log-2sin-x-n-1-1-n-cos-2nx-0-pi-4-log-2-n-1-cos-2nx-n




Question Number 128244 by mnjuly1970 last updated on 05/Jan/21
               ...nice  calculus...       prove  that  ::Ω=  ∫_0 ^(π/4) ln(sin(x))d=((−π)/4)log(2)−(G/2)      log(2sin(x))=Σ_(n=1) ^∞ ((−1)/n)cos(2nx)   Ω= ∫_0 ^( (π/4)) {−log(2)−Σ_(n=1) ^∞ ((cos(2nx))/n)}dx  =((−π)/4)log(2)−Σ_(n=1) ^∞ ∫_0 ^( (π/4)) ((cos(2nx))/n)dx   =((−π)/4)log(2)−Σ_(n=1) ^∞ [(1/(2n^2 ))sin(2nx)]_0 ^(π/4)     =((−π)/4)log(2)−(1/2)Σ_(n=1) ^∞ ((sin(((nπ)/2)))/n^2 )   =((−π)/4)log(2)−(1/2){(1/1^2 )−(1/3^2 ) +(1/5^2 )−..}   =((−π)/4)log(2)−(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)^2 ))              ∴  Ω =((−π)/4)log(2)−(G/2)  ✓                       G:= catalan  constant...
nicecalculusprovethat::Ω=0π4ln(sin(x))d=π4log(2)G2log(2sin(x))=n=11ncos(2nx)Ω=0π4{log(2)n=1cos(2nx)n}dx=π4log(2)n=10π4cos(2nx)ndx=π4log(2)n=1[12n2sin(2nx)]0π4=π4log(2)12n=1sin(nπ2)n2=π4log(2)12{112132+152..}=π4log(2)12n=1(1)n1(2n1)2Ω=π4log(2)G2G:=catalanconstant

Leave a Reply

Your email address will not be published. Required fields are marked *