nice-calculus-prove-that-0-pi-4-ln-sin-x-d-pi-4-log-2-G-2-log-2sin-x-n-1-1-n-cos-2nx-0-pi-4-log-2-n-1-cos-2nx-n Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 128244 by mnjuly1970 last updated on 05/Jan/21 …nicecalculus…provethat::Ω=∫0π4ln(sin(x))d=−π4log(2)−G2log(2sin(x))=∑∞n=1−1ncos(2nx)Ω=∫0π4{−log(2)−∑∞n=1cos(2nx)n}dx=−π4log(2)−∑∞n=1∫0π4cos(2nx)ndx=−π4log(2)−∑∞n=1[12n2sin(2nx)]0π4=−π4log(2)−12∑∞n=1sin(nπ2)n2=−π4log(2)−12{112−132+152−..}=−π4log(2)−12∑∞n=1(−1)n−1(2n−1)2∴Ω=−π4log(2)−G2✓G:=catalanconstant… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: nice-calculus-prove-that-0-pi-4-xcot-x-dx-1-2-G-pi-4-log-2-Next Next post: Question-62712 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.