Menu Close

nice-calculus-prove-that-challanging-integral-1-x-1-2-x-dx-ln-2pi-1-x-is-fractional-part-of-x-




Question Number 124723 by mnjuly1970 last updated on 05/Dec/20
               .... nice   calculus....       prove  that::       challanging   integral::      Ω=  ∫_1 ^(  ∞)  ((({x}−(1/2))/x))dx=^(???) ln((√(2π)) )−1     {x} is fractional part of  ′x′
.nicecalculus.provethat::challangingintegral::Ω=1({x}12x)dx=???ln(2π)1{x}isfractionalpartofx
Answered by Bird last updated on 05/Dec/20
Ω=∫_1 ^∞ ((x−[x]−(1/2))/x)dx  =∫_1 ^∞ (1−(([x]+(1/2))/x))dx  =Σ_(n=1) ^∞  ∫_n ^(n+1) (1−((n+(1/2))/x))dx  =Σ_(n=1) ^∞  ∫_n ^(n+1) dx−(n+(1/2))(dx/x)  =Σ_(n=1) ^∞ (1−(n+(1/2)){ln(n+1)−ln(n)}  =Σ_(n=1) ^∞ (1−(n+(1/2))ln(1+(1/n)))  ln^′ (1+u)=1−u+o(u^2 ) ⇒  ln(1+u)=u−(u^2 /2) +o(u^2 ) ⇒  ln(1+(1/n))=(1/n)−(1/(2n^2 ))+o((1/n^2 ))⇒  1−(n+(1/2))ln(1+(1/n))  ∼1−(n+(1/2))((1/n)−(1/(2n^2 )))  1−(1−(1/(2n))+(1/(2n))−(1/(4n^2 )))=(1/(4n^2 )) ⇒  Σ_(n=1) ^∞ {1−(n+(1/2))ln(1+(1/n))}  is convergent...be continued
Ω=1x[x]12xdx=1(1[x]+12x)dx=n=1nn+1(1n+12x)dx=n=1nn+1dx(n+12)dxx=n=1(1(n+12){ln(n+1)ln(n)}=n=1(1(n+12)ln(1+1n))ln(1+u)=1u+o(u2)ln(1+u)=uu22+o(u2)ln(1+1n)=1n12n2+o(1n2)1(n+12)ln(1+1n)1(n+12)(1n12n2)1(112n+12n14n2)=14n2n=1{1(n+12)ln(1+1n)}isconvergentbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *