nice-calculus-prove-that-challanging-integral-1-x-1-2-x-dx-ln-2pi-1-x-is-fractional-part-of-x- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 124723 by mnjuly1970 last updated on 05/Dec/20 ….nicecalculus….provethat::challangingintegral::Ω=∫1∞({x}−12x)dx=???ln(2π)−1{x}isfractionalpartof′x′ Answered by Bird last updated on 05/Dec/20 Ω=∫1∞x−[x]−12xdx=∫1∞(1−[x]+12x)dx=∑n=1∞∫nn+1(1−n+12x)dx=∑n=1∞∫nn+1dx−(n+12)dxx=∑n=1∞(1−(n+12){ln(n+1)−ln(n)}=∑n=1∞(1−(n+12)ln(1+1n))ln′(1+u)=1−u+o(u2)⇒ln(1+u)=u−u22+o(u2)⇒ln(1+1n)=1n−12n2+o(1n2)⇒1−(n+12)ln(1+1n)∼1−(n+12)(1n−12n2)1−(1−12n+12n−14n2)=14n2⇒∑n=1∞{1−(n+12)ln(1+1n)}isconvergent…becontinued Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-the-differential-equation-d-2-dt-2-x-2-x-t-0-x-0-0-x-2-0-o-Next Next post: Question-124722 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.