Menu Close

nice-calculus-prove-that-I-0-1-2-log-2-1-x-x-dx-3-4-1-3-log-3-2-




Question Number 123547 by mnjuly1970 last updated on 26/Nov/20
               ....nice     calculus....              prove  that::::                 I:=∫_0 ^(1/2)  {((log^2 (1−x))/x)}dx                              = ((ζ(3))/4) − (1/3)log^3 (2)✓
.nicecalculus.provethat::::I:=012{log2(1x)x}dx=ζ(3)413log3(2)
Answered by mnjuly1970 last updated on 26/Nov/20
      solution:        special values::             i:: li_2 ((1/2))[ =_(try it.) ^(why??)  ](π^2 /(12)) −(1/2)log^2 (2) ✓             ii:: li_3 ((1/2))[ =_(prove it.) ^(why??)  ](7/8)ζ(3)+(1/6)log^3 (2)−(π^2 /(12))log(2) ✓              iii:: li_3 (1) =ζ(3)✓          I=^(1−x=t) ∫_(1/2) ^( 1) ((log^2 (t))/(1−t))dt=^(i.b.p) [−log(1−t)log^2 (t)]_(1/2) ^1 +2∫_(1/2) ^( 1) ((log(t)log(1−t))/t)dt         =log((1/2))log^2 ((1/2))+2∫_(1/2) ^( 1) log(t)d(−li_2 (t))         =−log^3 (2)+2{[log(t)li_2 (t)]_((1/2) ) ^1 +∫_(1/2) ^( 1) ((li_2 (t))/t)dt}         =−log^3 (2)+2[log((1/2))li_2 ((1/2))]+2li_3 (1)−2li_3 ((1/2))          =−log^3 (2)−2log(2)((π^2 /(12))−(1/2)log^2 (2))+_↫            −^↬  (7/4)ζ(3)−(1/3)log^3 (2)+(π^2 /6)log(2)+2ζ(3)           =((ζ (3 ))/4) −(1/3)log^3 (2)  ✓ ✓                         nice.calculus. m.n.july.1970
solution:specialvalues::i::li2(12)[=why??tryit.]π21212log2(2)ii::li3(12)[=why??proveit.]78ζ(3)+16log3(2)π212log(2)iii::li3(1)=ζ(3)I=1x=t121log2(t)1tdt=i.b.p[log(1t)log2(t)]121+2121log(t)log(1t)tdt=log(12)log2(12)+2121log(t)d(li2(t))=log3(2)+2{[log(t)li2(t)]121+121li2(t)tdt}=log3(2)+2[log(12)li2(12)]+2li3(1)2li3(12)=log3(2)2log(2)(π21212log2(2))+74ζ(3)13log3(2)+π26log(2)+2ζ(3)=ζ(3)413log3(2)nice.calculus.m.n.july.1970
Answered by mathmax by abdo last updated on 26/Nov/20
I =∫_0 ^(1/2) ((log^2 (1−x))/x)dx ⇒I =_(x=(t/2))  2∫_0 ^1  ((log^2 (1−(t/2)))/t)(dt/2)  =∫_0 ^1 ((log^2 (1−(t/2)))/t) dt   let f(a) =∫_0 ^1  ((log^2 (1−at))/t)dt[with 0<a<1  f^′ (a) =2∫_0 ^1 ((−t)/(1−at))((log(1−at))/t)dt =−2 ∫_0 ^1  ((log(1−at))/(1−at))dt  =−2 ∫_0 ^1 log(1−at)Σ_(n=0) ^∞  a^n  t^n  dt  =−2 Σ_(n=0) ^∞  a^n  ∫_0 ^1  t^n log(1−at)dt =−2Σ_(n=0) ^∞  a^n  U_n   U_n =∫_0 ^1  t^n  log(1−at)dt =[(t^(n+1) /(n+1))log(1−at)]_0 ^1  =((log(1−a))/(n+1))  −∫_0 ^1  (t^(n+1) /(n+1))×((−a)/(1−at))dt =((log(1−a))/(n+1)) +(a/(n+1))∫_0 ^1  (t^(n+1) /(1−at))dt and  ∫_0 ^1  (t^(n+1) /(1−at))dt  =_(1−at=z)   ∫_1 ^(1−a)  (((((1−z)/a))^(n+1) )/z)(−(1/a))dz  =(1/a^(n+2) )∫_(1−a) ^a   (((1−z)^(n+1) )/z)dz =(1/a^(n+2) )∫_(1−a) ^a (1/z)Σ_(k=0) ^(n+1) C_(n+1) ^k (−z)^k dz  =(1/a^(n+2) )∫_(1−a) ^a  Σ_(k=0) ^(n+1) C_(n+1) ^k (−1)^k  z^(k−1)  dz  =(1/a^(n+2) )Σ_(k=0) ^(n+1)  C_(n+1) ^k (−1)^k  [(z^k /k)]_(1−a) ^a   =(1/a^(n+2) )Σ_(k=0) ^(n+1)  C_(n+1) ^k (((−1)^k )/k){a^k −(1−a)^k }....be continued...
I=012log2(1x)xdxI=x=t2201log2(1t2)tdt2=01log2(1t2)tdtletf(a)=01log2(1at)tdt[with0<a<1f(a)=201t1atlog(1at)tdt=201log(1at)1atdt=201log(1at)n=0antndt=2n=0an01tnlog(1at)dt=2n=0anUnUn=01tnlog(1at)dt=[tn+1n+1log(1at)]01=log(1a)n+101tn+1n+1×a1atdt=log(1a)n+1+an+101tn+11atdtand01tn+11atdt=1at=z11a(1za)n+1z(1a)dz=1an+21aa(1z)n+1zdz=1an+21aa1zk=0n+1Cn+1k(z)kdz=1an+21aak=0n+1Cn+1k(1)kzk1dz=1an+2k=0n+1Cn+1k(1)k[zkk]1aa=1an+2k=0n+1Cn+1k(1)kk{ak(1a)k}.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *