Menu Close

nice-calculus-prove-that-I-0-1-e-x-sin-2-x-x-3-2-2pi-1-2-1-m-n-




Question Number 154409 by mnjuly1970 last updated on 18/Sep/21
    nice calculus..       prove  that :      I:=∫_0 ^( ∞) (( (1+e^( −x)  )sin^( 2) (x))/x^( (3/2)) ) =(√(2π)) ( 1+ (√((√2) − 1)) )   m.n
nicecalculus..provethat:I:=0(1+ex)sin2(x)x32=2π(1+21)m.n
Answered by Kamel last updated on 18/Sep/21
   I:=∫_0 ^( ∞) (( (1+e^( −x)  )sin^( 2) (x))/x^( (3/2)) )       =2∫_0 ^1 ∫_0 ^(+∞) x^(−(1/2)) (1+e^(−x) )sin(2ax)dxda     =2∫_0 ^1 ((√2)a^(−(1/2)) ∫_0 ^(+∞) sin(u^2 )du+(1/(2i))∫_0 ^(+∞) (e^(−(1−2ai)x^2 ) −e^(−(1+2ai)x^2 ) )dx)da     =2∫_0 ^1 (2^(−(1/2)) a^(−(1/2)) ((√π)/(2(√2)))+((√π)/(4i))((1/( (√(1−2ai))))−(1/( (√(1+2ai))))))da    =(√π)((1/2)((√(1−2i))+(√(1+2i))))=(√(2π(1+(√5))))
I:=0(1+ex)sin2(x)x32=2010+x12(1+ex)sin(2ax)dxda=201(2a120+sin(u2)du+12i0+(e(12ai)x2e(1+2ai)x2)dx)da=201(212a12π22+π4i(112ai11+2ai))da=π(12(12i+1+2i))=2π(1+5)

Leave a Reply

Your email address will not be published. Required fields are marked *