Menu Close

nice-calculus-prove-that-I-0-pi-2-cot-x-cot-x-dx-1-2-pi-ln-sinh-pi-pi-x-is-fractional-part-of-x-




Question Number 126986 by mnjuly1970 last updated on 25/Dec/20
           ... nice  calculus...       prove  that ::      I := ∫_0 ^( (π/2)) (({cot(x)})/(cot(x)))dx=(1/2)(π−ln(((sinh(π))/π)))  {x} is fractional part of  x ..
nicecalculusprovethat::I:=0π2{cot(x)}cot(x)dx=12(πln(sinh(π)π)){x}isfractionalpartofx..
Answered by Olaf last updated on 26/Dec/20
  I = ∫_0 ^(π/2) (({cotx})/(cotx))dx  Let u = cotx  I = ∫_∞ ^0 (({u})/u).(du/((−1−u^2 )))  I = ∫_0 ^∞ (({u})/(u(1+u^2 )))du  I = Σ_(n=0) ^∞ ∫_n ^(n+1) (({u})/(u(1+u^2 )))du  I = Σ_(n=0) ^∞ ∫_n ^(n+1) ((u−n)/(u(1+u^2 )))du  I = Σ_(n=0) ^∞ ∫_n ^(n+1) [((nu+1)/(u^2 +1))−(n/u)]du  I = Σ_(n=0) ^∞ [(n/2)ln(1+u^2 )−arctanu−nlnu]_n ^(n+1)   ...to be continued...
I=0π2{cotx}cotxdxLetu=cotxI=0{u}u.du(1u2)I=0{u}u(1+u2)duI=n=0nn+1{u}u(1+u2)duI=n=0nn+1unu(1+u2)duI=n=0nn+1[nu+1u2+1nu]duI=n=0[n2ln(1+u2)arctanunlnu]nn+1tobecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *