Menu Close

nice-calculus-prove-that-lim-x-0-2-x-x-2-pi-2-3x-3-where-x-0-1-t-x-1-ln-1-t-tln-t-dt-




Question Number 123687 by mnjuly1970 last updated on 27/Nov/20
               ...nice  calculus..   prove that::    lim_(x→0) (((2φ(x))/x^2 ) +(π^2 /(3x))) =^(???) ζ(3)           where       φ(x)=∫_0 ^( 1) (((t^x −1)(ln(1−t)))/(tln(t)))dt
nicecalculus..provethat::limx0(2ϕ(x)x2+π23x)=???ζ(3)whereϕ(x)=01(tx1)(ln(1t))tln(t)dt
Answered by mnjuly1970 last updated on 28/Nov/20
solution:  φ(x)=−∫_0 ^( 1) {((t^x −1)/(ln(t)))Σ_(n=1) ^∞ (t^(n−1) /n)}dx            =−Σ_(n=1 ) ^∞ (1/n)∫_0 ^( 1) ((t^(x+n−1) −t^(n−1) )/(ln(t)))dt              =−Σ_(n≥1) (1/n)[ln(x+n)−ln(n)]         =−Σ_(n≥1) (1/n)ln(((x+n)/n))=−Σ_(n≥1) (1/n)ln(1+(x/n))  =−Σ_(n≥1) (1/n)Σ_(m≥1) (((((−x)/n))^m )/m)=Σ_(m≥1) (((−x)^m )/m)Σ_(n≥1) (1/n^(m+1) )  ∴ φ(x)=Σ_(m≥1) (((−x)^m  ζ(m+1))/m)         =(((−x)^1 )/1) ζ(2)+(x^2 /2)ζ(3)−(x^3 /3)ζ(4)+...  ⇒((2φ(x))/x^2 )=ζ(3)−((2ζ(2))/x)−((2x)/3)ζ(4)+...   ⇒2((φ(x))/x^2 )+(π^2 /(3x))=ζ(3)−((2x)/3)φζ(4)+...  limit from both  sides  as x→0...   lim_(x→0) (((2φ(x))/x^2 )+(π^2 /(3x)))=ζ(3) ✓✓                m.n.
solution:ϕ(x)=01{tx1ln(t)n=1tn1n}dx=n=11n01tx+n1tn1ln(t)dt=n11n[ln(x+n)ln(n)]=n11nln(x+nn)=n11nln(1+xn)=n11nm1(xn)mm=m1(x)mmn11nm+1ϕ(x)=m1(x)mζ(m+1)m=(x)11ζ(2)+x22ζ(3)x33ζ(4)+2ϕ(x)x2=ζ(3)2ζ(2)x2x3ζ(4)+2ϕ(x)x2+π23x=ζ(3)2x3ϕζ(4)+limitfrombothsidesasx0limx0(2ϕ(x)x2+π23x)=ζ(3)m.n.

Leave a Reply

Your email address will not be published. Required fields are marked *