nice-calculus-prove-that-lim-x-0-2-x-x-2-pi-2-3x-3-where-x-0-1-t-x-1-ln-1-t-tln-t-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123687 by mnjuly1970 last updated on 27/Nov/20 …nicecalculus..provethat::limx→0(2ϕ(x)x2+π23x)=???ζ(3)whereϕ(x)=∫01(tx−1)(ln(1−t))tln(t)dt Answered by mnjuly1970 last updated on 28/Nov/20 solution:ϕ(x)=−∫01{tx−1ln(t)∑∞n=1tn−1n}dx=−∑∞n=11n∫01tx+n−1−tn−1ln(t)dt=−∑n⩾11n[ln(x+n)−ln(n)]=−∑n⩾11nln(x+nn)=−∑n⩾11nln(1+xn)=−∑n⩾11n∑m⩾1(−xn)mm=∑m⩾1(−x)mm∑n⩾11nm+1∴ϕ(x)=∑m⩾1(−x)mζ(m+1)m=(−x)11ζ(2)+x22ζ(3)−x33ζ(4)+…⇒2ϕ(x)x2=ζ(3)−2ζ(2)x−2x3ζ(4)+…⇒2ϕ(x)x2+π23x=ζ(3)−2x3ϕζ(4)+…limitfrombothsidesasx→0…limx→0(2ϕ(x)x2+π23x)=ζ(3)✓✓m.n. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: who-did-discoer-the-light-s-speed-and-by-which-method-Next Next post: A-1-1-i-B-2-i-2-C-1-3i-1-i-are-given-find-angle-between-AB-and-AC- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.