Menu Close

nice-calculus-prove-that-lim-x-xe-1-x-e-1-x-1-x-2-euler-mascheroni-constant-




Question Number 124831 by mnjuly1970 last updated on 06/Dec/20
            ...nice  calculus...      prove   that::     lim_(x→∞) {xe^(1/x) −e^((−1)/x) Γ((1/x) )}=2+γ      γ: euler−mascheroni constant
nicecalculusprovethat::limx{xe1xe1xΓ(1x)}=2+γγ:eulermascheroniconstant
Answered by Dwaipayan Shikari last updated on 06/Dec/20
lim_(x→∞) (xe^(1/x) −e^(−(1/x)) x(((e^(−(γ/x)) Π^∞ e^(1/(nx)) )/(Π^∞ (1+(1/(nx)))))))     e^(1/(nx)) =1+(1/(nx))  =lim_(x→∞) (xe^(1/x) −xe^(−(1/x)−(γ/x)) )=x(1+(1/x))−x(1−(1/x)−(γ/x))  =1+1+γ=2+γ      lim_(z→0) e^z =1+z
limx(xe1xe1xx(eγxe1nx(1+1nx)))e1nx=1+1nx=limx(xe1xxe1xγx)=x(1+1x)x(11xγx)=1+1+γ=2+γlimz0ez=1+z
Commented by mnjuly1970 last updated on 06/Dec/20
thank you  excellent....
thankyouexcellent.
Commented by Dwaipayan Shikari last updated on 06/Dec/20
Great sir!  :)
Greatsir!:)
Answered by mindispower last updated on 06/Dec/20
Γ((1/x))=xΓ(1+(1/x))  e^(1/x) =1+(1/x)+o((1/x)),e^(−(1/x)) =(1−(1/x)+o((1/x)))  Γ(1+(1/x))=1+((Ψ(1))/x)+o((1/x))  ⇔x(1+(1/x)+o((1/x)))−(1−(1/x)+o((1/x))).x(1−(γ/x)+o((1/x)))   =x+1+o(1)−(x−γ−1+o(1))  =γ+2+o(1)  lim_(x→0) (γ+2+o(1))=γ+2
Γ(1x)=xΓ(1+1x)e1x=1+1x+o(1x),e1x=(11x+o(1x))Γ(1+1x)=1+Ψ(1)x+o(1x)x(1+1x+o(1x))(11x+o(1x)).x(1γx+o(1x))=x+1+o(1)(xγ1+o(1))=γ+2+o(1)limx0(γ+2+o(1))=γ+2
Commented by mnjuly1970 last updated on 06/Dec/20
thanks alot sir Powr..
thanksalotsirPowr..
Answered by mnjuly1970 last updated on 06/Dec/20
(1/x)=_(t→0) ^(x→∞) t    lim_(t→0) [(1/t)e^t −e^(−t) Γ(t)]    =lim_(t→0) (((e^t −e^(−t) Γ(t+1))/t))   =_(rule) ^(hopital) lim_(t→0) (((e^t +e^(−t) Γ(t+1)−Γ′(t+1)e^(−t) )/1))  =1+1−ψ(1)=2−(−γ)=2+γ ✓
1x=xt0tlimt0[1tetetΓ(t)]=limt0(etetΓ(t+1)t)=hopitalrulelimt0(et+etΓ(t+1)Γ(t+1)et1)=1+1ψ(1)=2(γ)=2+γ

Leave a Reply

Your email address will not be published. Required fields are marked *