Question Number 122298 by mnjuly1970 last updated on 15/Nov/20
$$\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:{prove}\:\:{that}\::\:\: \\ $$$$\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\left\{\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}\right\}=−\gamma+{ln}\left(\mathrm{2}\right)\checkmark \\ $$$$\:\:\:..{m}.{n}.\mathrm{1970}.. \\ $$
Answered by mindispower last updated on 17/Nov/20
$$\zeta\left({s}\right)−\mathrm{1}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{s}−\mathrm{1}} }{\Gamma\left({s}\right)\left({e}^{{x}} \left({e}^{{x}} −\mathrm{1}\right)\right)}{dx} \\ $$$$\Rightarrow\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}{n}} {dx}}{\Gamma\left(\mathrm{2}{n}+\mathrm{1}\right){e}^{{x}} \left({e}^{{x}} −\mathrm{1}\right)} \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{1}}{{n}+\mathrm{1}}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}{n}} {dx}}{\left({n}+\mathrm{1}\right)\Gamma\left(\mathrm{2}{n}+\mathrm{1}\right){e}^{{x}} \left({e}^{{x}} −\mathrm{1}\right)}..{I} \\ $$$$\Sigma\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}!\left({n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{x}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}!\left({n}+\mathrm{1}\right)}={g}\left({x}\right) \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{x}^{\mathrm{2}{n}+\mathrm{2}} }{\mathrm{2}{n}!\left({n}+\mathrm{1}\right)}={f}\left({x}\right)\Rightarrow{f}'\left({x}\right)={x}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}{x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}!\right)}\: \\ $$$$=\mathrm{2}{x}\left({ch}\left({x}\right)−\mathrm{1}\right) \\ $$$$=\mathrm{2}{xsh}\left({x}\right)−\mathrm{2}{ch}\left({x}\right)−{x}^{\mathrm{2}} +\mathrm{2} \\ $$$${f}\left({x}\right)=\mathrm{2}{xsh}\left({x}\right)−{x}^{\mathrm{2}} −\mathrm{2}{ch}\left({x}\right)+\mathrm{2} \\ $$$${g}\left({x}\right)=\frac{\mathrm{2}{sh}\left({x}\right)}{{x}\:}−\mathrm{1}−\frac{\mathrm{2}{ch}\left({x}\right)}{{x}^{\mathrm{2}} }+\frac{\mathrm{2}}{{x}^{\mathrm{2}} \:} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{xsh}\left({x}\right)−{x}^{\mathrm{2}} −\mathrm{2}{ch}\left({x}\right)+\mathrm{2}}{{x}^{\mathrm{2}} {e}^{{x}} \left({e}^{{x}} −\mathrm{1}\right)}{dx}={S} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{xe}^{{x}} −{xe}^{−{x}} −{x}^{\mathrm{2}} −{e}^{{x}} −{e}^{−{x}} +\mathrm{2}}{{x}^{\mathrm{2}} {e}^{{x}} \left({e}^{{x}} −\mathrm{1}\right)}{dx} \\ $$$$ \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{xe}^{−{x}} −{xe}^{−\mathrm{3}{x}} −{x}^{\mathrm{2}} {e}^{−\mathrm{2}{x}} −{e}^{−{x}} −{e}^{−\mathrm{3}{x}} +\mathrm{2}{e}^{−\mathrm{2}{x}} }{{x}^{\mathrm{2}} \left(\mathrm{1}−{e}^{−{x}} \right)}{dx}..{E} \\ $$$$\Psi\left({z}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}}−\frac{{e}^{−{zt}} }{\mathrm{1}−{e}^{−{t}} }{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} }{{t}}−\frac{{e}^{−{t}} }{\mathrm{1}−{e}^{−{t}} }{dt}=\Psi\left(\mathrm{1}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} −{te}^{−{t}} −{e}^{−\mathrm{2}{t}} }{{t}\left(\mathrm{1}−{e}^{−{t}} \right)}{dt}..{nice} \\ $$$${E}=\int_{\mathrm{0}} ^{\infty} \frac{{te}^{−{t}} −{t}^{\mathrm{2}} {e}^{−{t}} −{te}^{−\mathrm{2}{t}} +{t}^{\mathrm{2}} {e}^{−{t}} +{te}^{−\mathrm{2}{t}} −{te}^{−\mathrm{3}{t}} −{t}^{\mathrm{2}} {e}^{−\mathrm{2}{t}} −{e}^{−{t}} −{e}^{−\mathrm{3}{t}} +\mathrm{2}{e}^{−\mathrm{2}{t}} }{{t}^{\mathrm{2}} \left(\mathrm{1}−{e}^{−{t}} \right)}{dt} \\ $$$$=\Psi\left(\mathrm{1}\right)+\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} {e}^{−{t}} \left(\mathrm{1}−{e}^{−{t}} \right)+{te}^{−\mathrm{2}{t}} \left(\mathrm{1}−{e}^{−{t}} \right)−{e}^{−{t}} \left(\mathrm{1}+{e}^{−\mathrm{2}{t}} −\mathrm{2}{e}^{−{t}} \right)}{{t}^{\mathrm{2}} \left(\mathrm{1}−{e}^{−{t}} \right)}{dt} \\ $$$$=\Psi\left(\mathrm{1}\right)+\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} {e}^{−{t}} +{te}^{−\mathrm{2}{t}} −{e}^{−{t}} \left(\mathrm{1}−{e}^{−{t}} \right)}{{t}^{\mathrm{2}} }{dt}=\Psi\left(\mathrm{1}\right)+{T} \\ $$$${T}=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt}+\int_{\mathrm{0}} ^{\infty} \frac{{te}^{−\mathrm{2}{t}} −{e}^{−{t}} \:+{e}^{−\mathrm{2}{t}} }{{t}^{\mathrm{2}} }{e}^{−{st}} {dt}=\mathrm{1}+{w}\left({s}\right) \\ $$$${T}={w}\left(\mathrm{0}\right)+\mathrm{1} \\ $$$${w}'\left({s}\right)=\int_{\mathrm{0}} ^{\infty} −{e}^{−\left(\mathrm{2}+{s}\right){t}} {dt}+\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}\left(\mathrm{1}+{s}\right)} −{e}^{−{t}\left(\mathrm{2}+{s}\right)} }{{t}}\:{dt} \\ $$$${w}'\left({s}\right)=−\frac{\mathrm{1}}{\mathrm{2}+{s}}−\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{2}+{s}} ^{\mathrm{1}+{s}} {e}^{−{zt}} {dzdt} \\ $$$${w}'\left({s}\right)=−\frac{\mathrm{1}}{\mathrm{2}+{s}}−\int_{\mathrm{2}+{s}} ^{\mathrm{1}+{s}} \int_{\mathrm{0}} ^{\infty} {e}^{−{zt}} {dtdz} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}+{s}}+{ln}\left(\frac{\mathrm{2}+{s}}{\mathrm{1}+{s}}\right) \\ $$$${w}\left({s}\right)=−{ln}\left(\mathrm{2}+{s}\right)+\left({s}+\mathrm{2}\right){ln}\left({s}+\mathrm{2}\right)−\left(\mathrm{1}+{s}\right){ln}\left(\mathrm{1}+{s}\right)+{c} \\ $$$${w}\left({s}\right)=\left({s}+\mathrm{1}\right){ln}\left(\frac{{s}+\mathrm{2}}{{s}+\mathrm{1}}\right)+{c} \\ $$$$\left({s}+\mathrm{1}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{s}}\right)+{c} \\ $$$$\underset{{s}\rightarrow\infty} {\mathrm{lim}}{w}\left({s}\right)=\mathrm{0}\Rightarrow\underset{{s}\rightarrow\infty} {\mathrm{lim}}\left({s}+\mathrm{1}\right){ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+{s}}\right)+{c}=\mathrm{0} \\ $$$$\Rightarrow{c}=−\mathrm{1} \\ $$$$\Rightarrow{w}\left(\mathrm{0}\right)={ln}\left(\mathrm{1}+\mathrm{1}\right)−\mathrm{1}={ln}\left(\mathrm{2}\right)−\mathrm{1} \\ $$$${T}=\mathrm{1}+{w}\left(\mathrm{0}\right)={ln}\left(\mathrm{2}\right) \\ $$$${S}=\Psi\left(\mathrm{1}\right)+{T}=−\gamma+{ln}\left(\mathrm{2}\right)… \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 18/Nov/20
$${bravo}\:{bravo}\: \\ $$$${sir}\:{mindspower}\:. \\ $$$${extraordinary}\:{my}\:{friend}.\left({good}\right)^{\infty} \\ $$$$\:\:\:\: \\ $$