Question Number 123937 by mnjuly1970 last updated on 29/Nov/20

Answered by Dwaipayan Shikari last updated on 29/Nov/20
![∫_(−(π/4)) ^(π/4) (((π−4x)tanx)/(1−tanx))dx=4∫_(−(π/4)) ^(π/4) ((x(1−tanx))/(2tanx)) =4∫_0 ^(π/4) xcotx−x dx =2∫_0 ^(π/2) xcotx−x dx =2x[log(sinx)]_0 ^(π/2) −2∫_0 ^(π/2) log(sinx)−(π^2 /4) =−2.(−(π/2)log(2))−(π^2 /4) =πlog(2)−(π^2 /4) =−0.289815](https://www.tinkutara.com/question/Q123944.png)
Commented by mnjuly1970 last updated on 29/Nov/20

Commented by CanovasCamiseros last updated on 29/Nov/20

Commented by Dwaipayan Shikari last updated on 29/Nov/20

Answered by mnjuly1970 last updated on 29/Nov/20
![solution:I=∫_((−π)/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx note :: ∫_0 ^(π/2) ln(sin(x))dx=((−π)/2)ln(2) =^(u=(π/4)−x) 4∫_0 ^( (π/2)) ((xtan((π/4)−u))/(1−tan((π/4)−u)))du =4∫_0 ^( (π/2)) {((x((1−tan(u))/(1+tan(u))))/((2tan(x))/(1+tan(x))))}du =2∫_0 ^( (π/2)) xcot(x)(1−tan(x))dx =2∫_0 ^( (π/2)) xcot(x)dx−((π^2 /4)) =2{[xln(sin(x))]_0 ^(π/2) −∫_0 ^( (π/2)) ln(sin(x))dx}−(π^2 /4) =−2∫_0 ^( (π/2)) ln(sin(x))dx−(π^2 /4) =−2(((−π)/2)ln(2))−(π^2 /4)=πln(2)−(π^2 /4) ∴ ∫_((−π )/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx=πln(2)−(π^2 /4) ✓](https://www.tinkutara.com/question/Q123940.png)