Menu Close

nice-calculus-prove-that-pi-4-pi-4-pi-4x-tan-x-1-tan-x-dx-piln-2-pi-2-4-




Question Number 123937 by mnjuly1970 last updated on 29/Nov/20
            ...nice      calculus...   prove that::   ∫_((−π)/4) ^(π/4) (((π−4x)tan(x))/(1−tan(x)))dx=^(???) πln(2)−(π^2 /4)
nicecalculusprovethat::π4π4(π4x)tan(x)1tan(x)dx=???πln(2)π24
Answered by Dwaipayan Shikari last updated on 29/Nov/20
∫_(−(π/4)) ^(π/4) (((π−4x)tanx)/(1−tanx))dx=4∫_(−(π/4)) ^(π/4) ((x(1−tanx))/(2tanx))  =4∫_0 ^(π/4) xcotx−x dx  =2∫_0 ^(π/2) xcotx−x dx =2x[log(sinx)]_0 ^(π/2) −2∫_0 ^(π/2) log(sinx)−(π^2 /4)  =−2.(−(π/2)log(2))−(π^2 /4) =πlog(2)−(π^2 /4)  =−0.289815
π4π4(π4x)tanx1tanxdx=4π4π4x(1tanx)2tanx=40π4xcotxxdx=20π2xcotxxdx=2x[log(sinx)]0π220π2log(sinx)π24=2.(π2log(2))π24=πlog(2)π24=0.289815
Commented by mnjuly1970 last updated on 29/Nov/20
thank you so much...
thankyousomuch
Commented by CanovasCamiseros last updated on 29/Nov/20
Please who can help me with hard differential equations questions?
Pleasewhocanhelpmewithharddifferentialequationsquestions?
Commented by Dwaipayan Shikari last updated on 29/Nov/20
Kindly post your problem sir!
Kindlypostyourproblemsir!
Answered by mnjuly1970 last updated on 29/Nov/20
solution:I=∫_((−π)/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx  note ::  ∫_0 ^(π/2) ln(sin(x))dx=((−π)/2)ln(2)        =^(u=(π/4)−x) 4∫_0 ^( (π/2)) ((xtan((π/4)−u))/(1−tan((π/4)−u)))du   =4∫_0 ^( (π/2)) {((x((1−tan(u))/(1+tan(u))))/((2tan(x))/(1+tan(x))))}du   =2∫_0 ^( (π/2)) xcot(x)(1−tan(x))dx  =2∫_0 ^( (π/2)) xcot(x)dx−((π^2 /4))    =2{[xln(sin(x))]_0 ^(π/2) −∫_0 ^( (π/2)) ln(sin(x))dx}−(π^2 /4)     =−2∫_0 ^( (π/2)) ln(sin(x))dx−(π^2 /4)       =−2(((−π)/2)ln(2))−(π^2 /4)=πln(2)−(π^2 /4)                 ∴  ∫_((−π  )/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx=πln(2)−(π^2 /4)  ✓
solution:I=π4π4(π4x)tan(x)1tan(x)dxnote::0π2ln(sin(x))dx=π2ln(2)=u=π4x40π2xtan(π4u)1tan(π4u)du=40π2{x1tan(u)1+tan(u)2tan(x)1+tan(x)}du=20π2xcot(x)(1tan(x))dx=20π2xcot(x)dx(π24)=2{[xln(sin(x))]0π20π2ln(sin(x))dx}π24=20π2ln(sin(x))dxπ24=2(π2ln(2))π24=πln(2)π24π4π4(π4x)tan(x)1tan(x)dx=πln(2)π24

Leave a Reply

Your email address will not be published. Required fields are marked *