Menu Close

nice-calculus-prove-that-R-e-x-sinh-2-x-dx-pi-




Question Number 123261 by mnjuly1970 last updated on 24/Nov/20
          ... nice  calculus...      prove  that::          Ω=∫_R e^(x−sinh^2 (x)) dx=(√π)
nicecalculusprovethat::Ω=Rexsinh2(x)dx=π
Answered by Olaf last updated on 24/Nov/20
Ω = ∫_(−∞) ^(+∞) e^x e^(−sinh^2 x) dx (1)  Let u = −x  Ω = ∫_(+∞) ^(−∞) e^(−x) e^(−sinh^2 x) (−dx) = ∫_(−∞) ^(+∞) e^(−x) e^(−sinh^2 x) dx (2)  (1)+(2) :  2Ω = ∫_(−∞) ^(+∞) (e^x +e^(−x) )e^(−sinh^2 x) dx  ⇒ Ω = ∫_(−∞) ^(+∞) coshxe^(−sinh^2 x) dx  ⇒ Ω = 2∫_0 ^(+∞) coshxe^(−sinh^2 x) dx  Let u = sinhx, du = coshxdx  Ω = 2∫_0 ^(+∞) e^(−u^2 ) du = 2×erf_∞  = 2×((√π)/2)  Ω = (√π)
Ω=+exesinh2xdx(1)Letu=xΩ=+exesinh2x(dx)=+exesinh2xdx(2)(1)+(2):2Ω=+(ex+ex)esinh2xdxΩ=+coshxesinh2xdxΩ=20+coshxesinh2xdxLetu=sinhx,du=coshxdxΩ=20+eu2du=2×erf=2×π2Ω=π
Commented by mnjuly1970 last updated on 24/Nov/20
bravo   excellent.thank you master
bravoexcellent.thankyoumaster

Leave a Reply

Your email address will not be published. Required fields are marked *