Menu Close

nice-calculus-simple-question-prove-that-0-4-4-x-4-dx-0-pi-2-dx-sin-x-0-pi-2-dx-cos-x-




Question Number 124587 by mnjuly1970 last updated on 04/Dec/20
               ...nice ◂::::▶ calculus       simple  question::       prove  that ::       ∫_0 ^( ∞) (4/( (√(4+x^4 )))) dx=^(???) ∫_0 ^( (π/2)) (dx/( (√(sin(x))))) +∫_0 ^( (π/2)) (dx/( (√(cos(x)))))
nice::::calculussimplequestion::provethat::044+x4dx=???0π2dxsin(x)+0π2dxcos(x)
Answered by mindispower last updated on 04/Dec/20
x=(√2)t  =∫((2(√2)dt)/( (√(1+t^4 ))))  t=(√(tg(x)))  dt=(1/(2cos^2 (x)(√(tg(x)))))  =((√2)/( (√(tg(x))))) .(1/(cos(x)))dx=∫_0 ^(π/2) ((√2)/( (√(sin(x)cos(x)))))  dx  =∫_0 ^(π/2) ((2dx)/( (√(2sin(x)cos(x)))))2∫(dx/( (√(sin(2x)))))  2x=w  ⇒=∫_0 ^π (dw/( (√(sin(w)))))=∫_0 ^(π/2) (dw/( (√(sin(w)))))+∫_(π/2) ^π (dw/( (√(sin(w)))))∣_(w=(π/2)+x)   =∫_0 ^(π/2) (dx/( (√(sin(x)))))+∫_0 ^(π/2) (dx/( (√(cos(x)))))
x=2t=22dt1+t4t=tg(x)dt=12cos2(x)tg(x)=2tg(x).1cos(x)dx=0π22sin(x)cos(x)dx=0π22dx2sin(x)cos(x)2dxsin(2x)2x=w⇒=0πdwsin(w)=0π2dwsin(w)+π2πdwsin(w)w=π2+x=0π2dxsin(x)+0π2dxcos(x)
Commented by mindispower last updated on 05/Dec/20
withe plesur
witheplesur
Commented by mnjuly1970 last updated on 04/Dec/20
excellent.sir mindspower  as always...
excellent.sirmindspowerasalways

Leave a Reply

Your email address will not be published. Required fields are marked *