Menu Close

nice-calculus-Titu-s-lemma-for-any-positive-numbers-a-1-a-2-a-n-b-1-b-2-b-n-we-have-a-1-a-n-2-b-1-b-n-a-1-2-b-1-a-n-2-




Question Number 128023 by mnjuly1970 last updated on 04/Jan/21
             ....nice  calculus...=    Titu′s lemma::   for any positive numbers :  a_1 ,a_2 ,...,a_n  , b_1 ,b_2 ,...,b_n    we have:   (((a_1 +...+a_n )^2 )/(b_1 +...+b_n ))≤(a_1 ^2 /b_1 ) +...+(a_n ^2 /b_n )   proof :  put : x=(x_1 ,...,x_n )∈R^n            :y=(y_1 ,...,y_n )∈R^n   (x.y)^2 ≤∣x∣^2 ∣y∣^2 (cauchy−schwarz  inequality)  (x_1 y_1 +...+x_n y_n )^2 ≤(x_(1   ) ^2 +...+x_n ^2 )(y_1 ^2 +...+y_(n ) ^2 )   by applying subsitution :   x_i =(a_i /( (√b_i )))   ,  y_i =(√b_i ) (i=1,2 ,...,n)   ((a_(1 ) ^2 +...+a_(n ) ^2 )/(b_2 +...+b_n ))≤(a_1 ^2 /b_1 )+...+(a_n ^2 /b_n )   ✓✓
.nicecalculus=Tituslemma::foranypositivenumbers:a1,a2,,an,b1,b2,,bnwehave:(a1++an)2b1++bna12b1++an2bnproof:put:x=(x1,,xn)Rn:y=(y1,,yn)Rn(x.y)2⩽∣x2y2(cauchyschwarzinequality)(x1y1++xnyn)2(x12++xn2)(y12++yn2)byapplyingsubsitution:xi=aibi,yi=bi(i=1,2,,n)a12++an2b2++bna12b1++an2bn

Leave a Reply

Your email address will not be published. Required fields are marked *