nice-calculus-very-nice-integral-demonstrate-0-1-1-x-1-x-x-2-x-3-log-x-dx-log-1-2-m-n-1970- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 116667 by mnjuly1970 last updated on 05/Oct/20 …nicecalculus…veryniceintegral::demonstrate:::Ω=∫011−x(1+x+x2+x3)log(x)dx=???log(12).m.n.1970. Answered by maths mind last updated on 06/Oct/20 HelloaftermanytriesΩ=∫011−x(1+x+x2+x3).dxlog(x)letf(a)=∫011−x(1+x+x2+x3).xalog(x)dx,a∈[0,1]Ω=f(0)f(a)=∫01(1−x)21−x4..xalog(x)dxf′(a)=∫01(1−x)2(1−x4).∂axa.dxlog(x)=∫01(x2−2x+1)1−x4.xadxx4=t⇒dx=t−344dtf′(a)=∫01t24−2t14+11−tta4.t−34dt4=−∫011−ta4−141−tdt+2∫1−ta4−241−tdt−∫1−ta4−341−tdtweHaveoneofdefinitionofDigammaΨ(s+1)=−γ+∫011−xs1−xdx=(lnΓ(s+1))′4f′(a)=−Ψ(a+34)+2Ψ(a+24)−Ψ(a+14)4f(a)=−4lnΓ(a+34)−4lnΓ(a+14)+8lnΓ(a+24)+clima→∞f(a)=0⇒c=0f(0)=Ω4f(0)=4Ω=−4lnΓ(34)−4lnΓ(14)+8lnΓ(12)=−4ln(Γ(14)Γ(34)Γ2(12)):Γ(14)Γ(1−14)=πsin(π4)=π2Γ(12)=π⇒4Ω=−4ln(π2(π)2)=−4ln(2)=4ln(12)Ω=ln(12)∫011−x1+x+x2+x3.dxlog(x)=ln(12) Commented by maths mind last updated on 06/Oct/20 samideaworckfor∫011−xs∑nk=0xk.dxlog(x) Commented by mnjuly1970 last updated on 07/Oct/20 thankyougoodforyouyoureffortisadmirable… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-A-1-p-2-p-2-p-2-p-p-1-p-2-p-p-2-p-1-where-p-is-any-prime-number-Prove-that-for-any-value-of-p-however-we-split-this-set-into-two-disjunctive-sets-the-arithmetic-means-of-Next Next post: Question-116666 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.