Menu Close

nice-calculus-very-nice-integral-demonstrate-0-1-1-x-1-x-x-2-x-3-log-x-dx-log-1-2-m-n-1970-




Question Number 116667 by mnjuly1970 last updated on 05/Oct/20
            ...   nice  calculus...          very nice  integral::         demonstrate:::            Ω = ∫_0 ^( 1) ((1−x)/((1+x+x^2 +x^3 )log(x))) dx=^(???) log((√(1/2)))                         .m.n.1970.
nicecalculusveryniceintegral::demonstrate:::Ω=011x(1+x+x2+x3)log(x)dx=???log(12).m.n.1970.
Answered by maths mind last updated on 06/Oct/20
Hello after many tries  Ω=∫_0 ^1 ((1−x)/((1+x+x^2 +x^3 ))).(dx/(log(x)))  let f(a)=∫_0 ^1 ((1−x)/((1+x+x^2 +x^3 ))).(x^a /(log(x)))dx,a∈[0,1]  Ω=f(0)  f(a)=∫_0 ^1 (((1−x)^2 )/(1−x^4 ))..(x^a /(log(x)))dx  f′(a)=∫_0 ^1 (((1−x)^2 )/((1−x^4 ))).∂_a x^a .(dx/(log(x)))=∫_0 ^1 (((x^2 −2x+1))/(1−x^4 )).x^a dx  x^4 =t⇒dx=(t^(−(3/4)) /4)dt  f′(a)=∫_0 ^1 ((t^(2/4) −2t^(1/4) +1)/(1−t))t^(a/4) .t^(−(3/4)) (dt/4)  =−∫_0 ^1 ((1−t^((a/4)−(1/4)) )/(1−t))dt+2∫((1−t^((a/4)−(2/4)) )/(1−t))dt−∫((1−t^((a/4)−(3/4)) )/(1−t))dt  we Have one of definition of Digamma  Ψ(s+1)=−γ+∫_0 ^1 ((1−x^s )/(1−x))dx =(lnΓ(s+1))′  4f′(a)=−Ψ(((a+3)/4))+2Ψ(((a+2)/4))−Ψ(((a+1)/4))  4f(a)=−4lnΓ(((a+3)/4))−4lnΓ(((a+1)/4))+8lnΓ(((a+2)/4))+c  lim_(a→∞) f(a)=0⇒c=0  f(0)=Ω  4f(0)=4Ω=−4lnΓ((3/4))−4lnΓ((1/4))+8lnΓ((1/2))  =−4ln(((Γ((1/4))Γ((3/4)))/(Γ^2 ((1/2))))):Γ((1/4))Γ(1−(1/4))=(π/(sin((π/4))))=π(√2)  Γ((1/2))=(√π)⇒4Ω=−4ln(((π(√2))/(((√π))^2 )))=−4ln((√2))=4ln((√(1/2)))  Ω=ln((√(1/2)))  ∫_0 ^1 ((1−x)/(1+x+x^2 +x^3 )).(dx/(log(x)))=ln((√(1/2)))
HelloaftermanytriesΩ=011x(1+x+x2+x3).dxlog(x)letf(a)=011x(1+x+x2+x3).xalog(x)dx,a[0,1]Ω=f(0)f(a)=01(1x)21x4..xalog(x)dxf(a)=01(1x)2(1x4).axa.dxlog(x)=01(x22x+1)1x4.xadxx4=tdx=t344dtf(a)=01t242t14+11tta4.t34dt4=011ta4141tdt+21ta4241tdt1ta4341tdtweHaveoneofdefinitionofDigammaΨ(s+1)=γ+011xs1xdx=(lnΓ(s+1))4f(a)=Ψ(a+34)+2Ψ(a+24)Ψ(a+14)4f(a)=4lnΓ(a+34)4lnΓ(a+14)+8lnΓ(a+24)+climaf(a)=0c=0f(0)=Ω4f(0)=4Ω=4lnΓ(34)4lnΓ(14)+8lnΓ(12)=4ln(Γ(14)Γ(34)Γ2(12)):Γ(14)Γ(114)=πsin(π4)=π2Γ(12)=π4Ω=4ln(π2(π)2)=4ln(2)=4ln(12)Ω=ln(12)011x1+x+x2+x3.dxlog(x)=ln(12)
Commented by maths mind last updated on 06/Oct/20
sam idea worck for ∫_0 ^1 ((1−x^s )/(Σ_(k=0) ^n x^k )).(dx/(log(x)))
samideaworckfor011xsnk=0xk.dxlog(x)
Commented by mnjuly1970 last updated on 07/Oct/20
thank  you   good  for you  your effort  is admirable...
thankyougoodforyouyoureffortisadmirable

Leave a Reply

Your email address will not be published. Required fields are marked *