Menu Close

nice-calulus-evaluate-0-x-3-e-x-2-sinh-x-2-




Question Number 123720 by mnjuly1970 last updated on 27/Nov/20
          ... nice   calulus...     evaluate ::         Φ=  ∫_0 ^(  ∞) ((x^3 e^((−x)/2) )/(sinh((x/2)))) =???
nicecalulusevaluate::Φ=0x3ex2sinh(x2)=???
Answered by Dwaipayan Shikari last updated on 27/Nov/20
2∫_0 ^∞ ((x^3 e^(−(x/2)) )/(e^(x/2) −e^(−(x/2)) ))dx  =2∫_0 ^∞ (x^3 /(e^x −1))dx  =2Σ_(n=1) ^∞ ∫_0 ^∞ x^3 e^(−nx) =2Σ_(n=1) ^∞ (1/n^4 )∫_0 ^∞ u^3 e^(−u) du       nx=u  =2Γ(4)Σ_(n=1) ^∞ (1/n^4 )=((2π^4 )/(15))
20x3ex2ex2ex2dx=20x3ex1dx=2n=10x3enx=2n=11n40u3eudunx=u=2Γ(4)n=11n4=2π415
Commented by mnjuly1970 last updated on 27/Nov/20
thank you mr Dwaipayan...
thankyoumrDwaipayan
Commented by Dwaipayan Shikari last updated on 27/Nov/20
�� ����☃️
Answered by mathmax by abdo last updated on 28/Nov/20
Φ =∫_0 ^∞   ((x^3  e^(−(x/2)) )/(sh((x/2))))dx changement (x/2)=t give  Φ=∫_0 ^∞ ((8t^3  e^(−t) )/(sh(t)))(2)dt =32 ∫_0 ^∞   ((t^3  e^(−t) )/(e^t −e^(−t) ))dt  =32 ∫_0 ^∞   ((t^3 e^(−2t) )/(1−e^(−2t) ))dt =32 ∫_0 ^∞  t^3  e^(−2t) Σ_(n=0) ^∞ e^(−2nt)  dt  =32 Σ_(n=0) ^∞  ∫_0 ^∞  t^3  e^(−2(n+1)t) dt  =_(2(n+1)t=z)   32Σ_(n=0) ^∞ ∫_0 ^∞ (z^3 /(8(n+1)^3 ))e^(−z) (dz/(2(n+1)))  =2 Σ_(n=0) ^∞  (1/((n+1)^4 )) ∫_0 ^∞  z^(3 ) e^(−z) dz =2Γ(4)Σ_(n=1) ^∞  (1/n^4 )  =2Γ(4)ξ(4) =2.3!(π^4 /(90)) =((12π^4 )/(90)) =((6.2π^4 )/(6.15)) ⇒Φ=((2π^4 )/(15))
Φ=0x3ex2sh(x2)dxchangementx2=tgiveΦ=08t3etsh(t)(2)dt=320t3etetetdt=320t3e2t1e2tdt=320t3e2tn=0e2ntdt=32n=00t3e2(n+1)tdt=2(n+1)t=z32n=00z38(n+1)3ezdz2(n+1)=2n=01(n+1)40z3ezdz=2Γ(4)n=11n4=2Γ(4)ξ(4)=2.3!π490=12π490=6.2π46.15Φ=2π415

Leave a Reply

Your email address will not be published. Required fields are marked *