Menu Close

Nice-Integral-0-pi-4-tan-x-cos-2-x-2sin-2-x-dx-




Question Number 171560 by mnjuly1970 last updated on 17/Jun/22
       Nice   Integral               Ω = ∫_0 ^( (π/4)) (( tan(x))/(( cos^( 2) (x)  + 2sin^( 2) (x))))dx =
NiceIntegralΩ=0π4tan(x)(cos2(x)+2sin2(x))dx=
Commented by infinityaction last updated on 17/Jun/22
      Ω   =  ∫_0 ^(π/4)  ((tan x sec^2 x)/(1+2tan^2 x))dx     tan x = p → sec^2 x dx  = dp         Ω  = ∫_0 ^1 (p/(1+2p^2 ))dp         1+2p^2   =  t   →   4pdp = dt          Ω  =   (1/4)∫_1 ^3 (dt/(t ))  ⇒ (1/4)[log t]_1 ^3           Ω  = (1/4)log 3
Ω=0π4tanxsec2x1+2tan2xdxtanx=psec2xdx=dpΩ=01p1+2p2dp1+2p2=t4pdp=dtΩ=1413dtt14[logt]13Ω=14log3
Answered by floor(10²Eta[1]) last updated on 18/Jun/22
t=tg((x/2))  cos(x)=1−2sin^2 ((x/2))  1−(2/(csc^2 ((x/2))))=1−(2/(1+cotg^2 ((x/2))))  1−(2/(1+(1/t^2 )))=1−((2t^2 )/(t^2 +1))=((1−t^2 )/(1+t^2 ))  ⇒sin(x)=((2t)/(1+t^2 ))    ⇒((tgx)/(cos^2 x+2sin^2 x))=((tgx)/(1+sin^2 x))=((tgx)/(2−cos^2 x))  =((sinx)/(2cosx−cos^3 x))=(((2t)/(1+t^2 ))/(2(((1−t^2 )/(1+t^2 )))−(((1−t^2 )/(1+t^2 )))^3 ))  =((2t(1+t^2 )^2 )/(2(1−t^2 )(1+t^2 )^2 −(1−t^2 )^3 ))=((2t(1+t^2 )^2 )/((1−t^2 )[1+6t^2 +t^4 ]))    ⇒∫_0 ^(tg(π/8)) ((2t(1+t^2 )^2 )/((1−t^2 )(t^4 +6t^2 +1)))dx  t^2 =u  2tdt=du  ∫_0 ^(tg^2 (π/8)) (((1+u)^2 )/((1−u)(u^2 +6u+1)))du  =(1/2)∫_0 ^(tg^2 (π/8)) (du/(1−u))−(1/2)∫_0 ^(tg^2 (π/8)) ((u−1)/(u^2 +6u+1))du  =−(1/2)ln∣1−u∣_0 ^(tg^2 (π/8)) −(1/2)∫_0 ^(tg^2 (π/8)) ((u−1)/((u+3)^2 −8))du  =−(1/2)ln∣1−tg^2 (π/8)∣−(1/2)∫_0 ^(tg^2 (π/8)) ((u−1)/((u+3+2(√2))(u+3−2(√2))))du  =−(1/2)ln∣1−tg^2 (π/8)∣−(1/2)(((1+(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3+2(√2)))−(1/2)(((1−(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3−2(√2)))  =−(1/2)ln∣1−tg^2 (π/8)∣−(1/2)(((1+(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3+2(√2)))−(1/2)(((1−(√2))/2))∫_0 ^(tg^2 (π/8)) (du/(u+3−2(√2)))  =−(1/2)ln∣1−tg^2 (π/8)∣−((1+(√2))/4)[ln∣u+3+2(√2)∣]_0 ^(tg^2 (π/8)) −((1−(√2))/4)[ln∣u+3−2(√2)∣]_0 ^(tg^2 (π/8))   =−(1/2)ln∣1−tg^2 (π/8)∣−((1+(√2))/4)ln∣tg^2 (π/8)+3+2(√2)∣−((1−(√2))/4)ln∣tg^2 (π/8)+3−2(√2)∣+((√2)/2)ln(3+2(√2))
t=tg(x2)cos(x)=12sin2(x2)12csc2(x2)=121+cotg2(x2)121+1t2=12t2t2+1=1t21+t2sin(x)=2t1+t2tgxcos2x+2sin2x=tgx1+sin2x=tgx2cos2x=sinx2cosxcos3x=2t1+t22(1t21+t2)(1t21+t2)3=2t(1+t2)22(1t2)(1+t2)2(1t2)3=2t(1+t2)2(1t2)[1+6t2+t4]0tgπ82t(1+t2)2(1t2)(t4+6t2+1)dxt2=u2tdt=du0tg2π8(1+u)2(1u)(u2+6u+1)du=120tg2π8du1u120tg2π8u1u2+6u+1du=12ln1u0tg2π8120tg2π8u1(u+3)28du=12ln1tg2π8120tg2π8u1(u+3+22)(u+322)du=12ln1tg2π812(1+22)0tg2π8duu+3+2212(122)0tg2π8duu+322=12ln1tg2π812(1+22)0tg2π8duu+3+2212(122)0tg2π8duu+322=12ln1tg2π81+24[lnu+3+22]0tg2π8124[lnu+322]0tg2π8=12ln1tg2π81+24lntg2π8+3+22124lntg2π8+322+22ln(3+22)

Leave a Reply

Your email address will not be published. Required fields are marked *