Menu Close

nice-integral-please-prove-0-pi-2-ln-2-cot-x-dx-pi-3-8-m-n-1070-




Question Number 117953 by mnjuly1970 last updated on 14/Oct/20
         ...  ◂nice  integral▶...      please  prove :      Ω=∫_0 ^( (π/2)) ln^2 (cot(x))dx =(π^3 /8)                ...♠m.n.1070♠...
niceintegralpleaseprove:Ω=0π2ln2(cot(x))dx=π38m.n.1070
Answered by mindispower last updated on 14/Oct/20
Ω=∫_0 ^(π/2) ln^2 (cot(x))dx;cot(x)=s⇒  Ω=∫_0 ^∞ ((ln^2 (s))/(1+s^2 ))ds=2∫_0 ^1 ((ln^2 (s))/(1+s^2 ))ds=2∫_0 ^1 Σ(−s^2 )^k ln^2 (s)ds  =2Σ_(n≥0) (−1)^n ∫_0 ^1 s^(2k) ln^2 (s)ds  ∫_0 ^1 s^n ln^2 (s)ds=−(2/(n+1))∫_0 ^1 s^n ln(s)ds  =(2/((n+1)^2 ))  ∫_0 ^1 s^n ds=(2/((n+1)^3 ))  we get Σ_(n≥0) ((4(−1)^n )/((2n+1)^3 ))=Σ_(n≥0) (4/((4n+1)^3 ))−Σ_(n≥0) (4/((4n+3)^3 ))  =(1/(16))[Σ_(n≥0) (1/((n+(1/4))^3 ))−Σ_(n≥0) (1/((n+(3/4))^3 ))]  =(1/(16))[Ψ^3 ((1/4))−Ψ^3 ((3/4))]  Ψ(1−x)−Ψ(x)=πcot(πx)  ⇒Ψ^3 (1−x)−Ψ^3 (x)=(d^2 /dx^2 )(πcot(πx))  =(d/dx)(−π^2 (1+cot^2 (πx))=2π^3 (1+cot^2 (πx))cot(πx))  (1/(16))[Ψ^3 ((1/4))−Ψ^3 ((3/4))]=(1/(16))(2π^3 (1+cot^2 ((π/4)))cot((π/4))  =(π^3 /4)  may bee forget somthing
Ω=0π2ln2(cot(x))dx;cot(x)=sΩ=0ln2(s)1+s2ds=201ln2(s)1+s2ds=201Σ(s2)kln2(s)ds=2n0(1)n01s2kln2(s)ds01snln2(s)ds=2n+101snln(s)ds=2(n+1)201snds=2(n+1)3wegetn04(1)n(2n+1)3=n04(4n+1)3n04(4n+3)3=116[n01(n+14)3n01(n+34)3]=116[Ψ3(14)Ψ3(34)]Ψ(1x)Ψ(x)=πcot(πx)Ψ3(1x)Ψ3(x)=d2dx2(πcot(πx))=ddx(π2(1+cot2(πx))=2π3(1+cot2(πx))cot(πx))116[Ψ3(14)Ψ3(34)]=116(2π3(1+cot2(π4))cot(π4)=π34maybeeforgetsomthing
Commented by mnjuly1970 last updated on 14/Oct/20
thank you master   your work is very nice and  admirable  final answer is not very  important .your solution  is fabulous.grateful.
thankyoumasteryourworkisveryniceandadmirablefinalanswerisnotveryimportant.yoursolutionisfabulous.grateful.
Commented by mindispower last updated on 19/Oct/20
thank you withe plesur  sir do you have somme lectur about polygarithms   function identities  thank you for you  answer
thankyouwitheplesursirdoyouhavesommelecturaboutpolygarithmsfunctionidentitiesthankyouforyouanswer
Answered by mathmax by abdo last updated on 14/Oct/20
A =∫_0 ^(π/2) ln^2 (cotanx)dx ⇒ A =∫_0 ^(π/2) ln^2 ((1/(tanx)))dx  =∫_0 ^(π/2) ln^2 (tanx)dx =_(tanx=t)   ∫_0 ^∞  ((ln^2 (t))/(1+t^2 ))dt  =∫_0 ^1  ((ln^2 t)/(1+t^2 ))dt +∫_1 ^∞  ((ln^2 t)/(1+t^2 ))dt(→t=(1/u))  =∫_0 ^1  ((ln^2 t)/(1+t^2 ))dt +∫_0 ^1 ((ln^2 u)/((1+(1/u^2 ))))(du/u^2 ) =2∫_0 ^1  ((ln^2 x)/(1+x^2 ))dx  =2 ∫_0 ^1 ln^2 x(Σ_(n=0) ^∞ (−1)^n  x^(2n) )dx  =2 Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1  x^(2n)  ln^2 x dx =2Σ_(n=0) ^∞ (−1)^n  A_n   by parts  A_n =∫_0 ^1  x^(2n)  ln^2 xdx =[(x^(2n+1) /(2n+1))ln^2 x]_0 ^1 −∫_0 ^1  (x^(2n+1) /(2n+1))((2lnx)/x)dx  =−(2/((2n+1)))∫_0 ^1  x^(2n) lnx dx =−(2/((2n+1))){ [(x^(2n+1) /(2n+1))lnx]_0 ^1 −∫_0 ^1 (x^(2n) /(2n+1))}  =(2/((2n+1)^3 )) ⇒ A =4 Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 )) rest to find the value of  this serie by sir fourier...be continued....
A=0π2ln2(cotanx)dxA=0π2ln2(1tanx)dx=0π2ln2(tanx)dx=tanx=t0ln2(t)1+t2dt=01ln2t1+t2dt+1ln2t1+t2dt(t=1u)=01ln2t1+t2dt+01ln2u(1+1u2)duu2=201ln2x1+x2dx=201ln2x(n=0(1)nx2n)dx=2n=0(1)n01x2nln2xdx=2n=0(1)nAnbypartsAn=01x2nln2xdx=[x2n+12n+1ln2x]0101x2n+12n+12lnxxdx=2(2n+1)01x2nlnxdx=2(2n+1){[x2n+12n+1lnx]0101x2n2n+1}=2(2n+1)3A=4n=0(1)n(2n+1)3resttofindthevalueofthisseriebysirfourierbecontinued.
Commented by mnjuly1970 last updated on 15/Oct/20
thank you so much sir.  grateful...
thankyousomuchsir.grateful

Leave a Reply

Your email address will not be published. Required fields are marked *