Menu Close

Nice-Mathematics-calculation-0-1-tanh-1-x-x-dx-pi-2-4-x-t-2-0-1-tanh-1-t-t-




Question Number 157251 by mnjuly1970 last updated on 21/Oct/21
       # Nice Mathematics #         ...calculation ...          Ω :=∫_0 ^( 1) (( tanh^( −1)  ((√( x)) ))/x) dx =^?  (( π^( 2) )/4)     −−−−−−−−−−−−−      Ω :=^((√x) = t)  2∫_0 ^( 1) (( tanh^( −1)  (t ))/t) dt           :=^({tanh^( −1)  (t )= (1/2) ln( ((1+t)/(1−t)) ) })   ∫_0 ^( 1) ((ln( 1+t )− ln(1−t ))/t) dt      :  =  −Li_( 2)  (−1 ) + Li_( 2)  (1 )       :=^( {Li_( 2)  (z )= Σ_(n=1) ^∞ (( z^( n) )/n^( 2) ) })   η (2) + ζ (2)        :=  (π^( 2) /(12)) + (π^( 2) /6)  = (( π^( 2) )/( 4))                ■ m.n
You can't use 'macro parameter character #' in math modecalculationΩ:=01tanh1(x)xdx=?π24Ω:=x=t201tanh1(t)tdt:={tanh1(t)=12ln(1+t1t)}01ln(1+t)ln(1t)tdt:=Li2(1)+Li2(1):={Li2(z)=n=1znn2}η(2)+ζ(2):=π212+π26=π24◼m.n
Answered by qaz last updated on 21/Oct/21
∫_0 ^1 ((tanh^(−1) ((√x)))/x)dx  =2∫_0 ^1 ((tanh^(−1) x)/x)dx  =2Σ_(n=0) ^∞ (1/(2n+1))∫_0 ^1 x^(2n) dx  =2Σ_(n=0) ^∞ (1/((2n+1)^2 ))  =2(1−2^(−2) )ζ(2)  =(π^2 /4)
01tanh1(x)xdx=201tanh1xxdx=2n=012n+101x2ndx=2n=01(2n+1)2=2(122)ζ(2)=π24
Commented by mnjuly1970 last updated on 21/Oct/21
 thanks alot sir qaz
thanksalotsirqaz

Leave a Reply

Your email address will not be published. Required fields are marked *