Menu Close

nice-mathematics-please-evaluate-x-2-4-x-2-4-sin-2x-x-dx-m-n-1970-




Question Number 117121 by mnjuly1970 last updated on 09/Oct/20
        ...nice  mathematics..      please  evaluate...      Ω =∫_(−∞) ^( +∞) (((x^2 −4)/(x^2 +4))∗ ((sin(2x))/x)) dx =???     m.n.1970
nicemathematics..pleaseevaluateΩ=+(x24x2+4sin(2x)x)dx=???m.n.1970
Answered by Bird last updated on 10/Oct/20
I =∫_(−∞) ^(+∞)  (((x^2 −4)sin(2x))/(x(x^2 +4)))dx ⇒  I=Im(∫_(−∞) ^(+∞)  (((x^2 −4)e^(2ix) )/(x(x^2 +4))) dx)  let consider the complex function  ϕ(z) =(((z^2 −4)e^(2iz) )/(z(z^2 +4))) ⇒  ϕ(z) =(((z^2 −4)e^(2iz) )/(z(z−2i)(z+2i))) residus  theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,o)+Res(ϕ,2i)}  Res(ϕ,o) =lim_(z→0)  zϕ(z)  =lim_(z→0)    ((−4)/4)=−1  Res(ϕ,2i) =lim_(z→2i) (z−2i)ϕ(z)  =lim_(z→2i)    (((z^2 −4)e^(2iz) )/(z(z+2i)))     =((−8 e^(−4) )/((2i)(4i))) =e^(−4)  ⇒  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{−1 +e^(−4) } ⇒  I =2π{e^(−4) −1}
I=+(x24)sin(2x)x(x2+4)dxI=Im(+(x24)e2ixx(x2+4)dx)letconsiderthecomplexfunctionφ(z)=(z24)e2izz(z2+4)φ(z)=(z24)e2izz(z2i)(z+2i)residustheoremgive+φ(z)dz=2iπ{Res(φ,o)+Res(φ,2i)}Res(φ,o)=limz0zφ(z)=limz044=1Res(φ,2i)=limz2i(z2i)φ(z)=limz2i(z24)e2izz(z+2i)=8e4(2i)(4i)=e4+φ(z)dz=2iπ{1+e4}I=2π{e41}
Commented by AbduraufKodiriy last updated on 10/Oct/20
This solution is wrong. Because, according to  Cauchy′s formula, if singularity points  of the function are not on the boundary  of any set D, the formula that you wrote  is correct.  Sorry for my mistakes in English.
Thissolutioniswrong.Because,accordingtoCauchysformula,ifsingularitypointsofthefunctionarenotontheboundaryofanysetD,theformulathatyouwroteiscorrect.SorryformymistakesinEnglish.
Answered by AbduraufKodiriy last updated on 09/Oct/20
𝛀=∫_(−∞) ^( ∞) ((x^2 −4)/(x^2 +4))∙((sin2x)/x)dx=2∫_0 ^( ∞) (1−(8/(x^2 +4)))((sin2x)/x)dx=  =2∫_0 ^( ∞) ((sin2x)/x)dx−16∫_0 ^( ∞) ((sin2x)/(x(x^2 +4)))dx=π−16∫_0 ^( ∞) ((sin2x)/(x(x^2 +4)))dx;  𝛒=∫_0 ^( ∞) ((sin2x)/(x(x^2 +4)))dx; 𝛒(t)=∫_0 ^( ∞) ((sin(tx))/(x(x^2 +4)))dx;  L (𝛒(t))=L (∫_0 ^( ∞) ((sin(tx))/(x(x^2 +4)))dx)=∫_0 ^( ∞) e^(−st) ∫_0 ^( ∞) ((sin(tx))/(x(x^2 +4)))dxdt=  =∫_0 ^( ∞) (1/(x(x^2 +4)))∫_0 ^( ∞) e^(−st) sin(tx)dtdx;  I=∫_0 ^( ∞) e^(−st) sin(tx)dt=−(1/s)e^(−st) sin(tx)∣_0 ^∞ −(x/s^2 )e^(−st) cos(tx)∣_0 ^∞ −(x^2 /s^2 )I ⇒  ⇒ (1+(x^2 /s^2 ))I=(x/s^2 ) ⇒ I=(x/(s^2 +x^2 ))  L (𝛒(t))=∫_0 ^( ∞) (1/((x^2 +4)(x^2 +s^2 )))dx=(1/(s^2 −4))∫((1/(x^2 +4))−(1/(x^2 +s^2 )))dx=  =(1/(s^2 −4))((1/2)arctan((x/2))−(1/s)arctan((x/s)))∣_0 ^∞ =  =(1/(s^2 −4))∙((1/2)−(1/s))(π/2)=(π/4)∙(1/(s(s+2)))=(π/8)((1/s)−(1/(s+2)))  L^(−1) (L (𝛒(t)))=L^( −1) ((π/8)∙((1/s)−(1/(s+2)))) ⇒  ⇒ 𝛒(t)=(π/8)(1−e^(−2t) ); 𝛒=𝛒(t=2) ⇒ 𝛒=(π/8)(1−e^(−4) )  𝛀=π−16𝛒=π−2π(1−e^(−4) )=−π(1−2e^(−4) )
Ω=x24x2+4sin2xxdx=20(18x2+4)sin2xxdx==20sin2xxdx160sin2xx(x2+4)dx=π160sin2xx(x2+4)dx;ρ=0sin2xx(x2+4)dx;ρ(t)=0sin(tx)x(x2+4)dx;L(ρ(t))=L(0sin(tx)x(x2+4)dx)=0est0sin(tx)x(x2+4)dxdt==01x(x2+4)0estsin(tx)dtdx;I=0estsin(tx)dt=1sestsin(tx)0xs2estcos(tx)0x2s2I(1+x2s2)I=xs2I=xs2+x2L(ρ(t))=01(x2+4)(x2+s2)dx=1s24(1x2+41x2+s2)dx==1s24(12arctan(x2)1sarctan(xs))0==1s24(121s)π2=π41s(s+2)=π8(1s1s+2)L1(L(ρ(t)))=L1(π8(1s1s+2))ρ(t)=π8(1e2t);ρ=ρ(t=2)ρ=π8(1e4)Ω=π16ρ=π2π(1e4)=π(12e4)
Commented by mnjuly1970 last updated on 09/Oct/20
bravo bravo mr  abdurauf..thank you
bravobravomrabdurauf..thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *