Menu Close

nice-mathematics-Prove-that-I-0-cos-x-cosh-x-dx-pi-cosh-pi-2-prepared-m-n-




Question Number 152797 by mnjuly1970 last updated on 01/Sep/21
     nice..mathematics...           Prove that...   I= ∫_0 ^( ∞) (( cos (x ))/(cosh (x ))) dx=(π/( cosh ((π/2) ))) .......■               prepared ::  m.n
nice..mathematicsProvethatI=0cos(x)cosh(x)dx=πcosh(π2).◼prepared::m.n
Answered by mnjuly1970 last updated on 01/Sep/21
         I:= ∫_0 ^( ∞) (( e^(  ix) +e^( −ix) )/(e^( x) +e^( −x) ))dx= ∫_0 ^( ∞) (( e^( x(i−1)) +e^( −x(i+1)) )/(1+e^( −2x) ))dx           :=^(e^( −2x) =y)  (1/2)∫_0 ^( 1) (( y^( ((1−i)/2)) +y^((1+i)/2) )/(1+ y)) (dy/y)        := (1/2) ∫_0 ^( 1) (( y^( −((1+i)/2)) +y^( −((1−i)/2)) )/(1+y)) dy        := (1/2) ∫_0 ^( 1) (( (1−y )( y^( −((1+i)/2)) +y^(−((1−i)/2)) ))/(1−y^( 2) ))dy      := (1/2) ∫_0 ^( 1) (( y^( −((1+i)/2)) +y^(−((1−i)/2)) −y^((1−i)/2) −y^( ((1+i)/2)) )/(1−y^( 2) ))dy      :=^(y^( 2) = t) (1/4) ∫_0 ^( 1) (( t^( ((−3−i)/4)) −1+t^((−3+i)/4) −1+1−t^((−1−i)/4) +1−t^( ((−1+i)/4)) )/(1−t))dt        := (1/4) (ψ (((3−i)/4) )+[ψ(((3+i)/4))−ψ(((1−i)/4))]−ψ(((1+i)/4)))      :=^(ψ (z )−ψ (1−z )= −π cot(πz ))  (1/4) (−πcot ((((3+i)π)/4))−πcot((((3−i)π)/4) ))       :=(π/4) {cot((π/4) −((iπ)/4) )+ cot((π/4) +((iπ)/4))}       := (π/4) {(( 1+tan(((iπ)/4)))/(1−tan(((iπ)/4) ))) +((1−tan(((iπ)/4)))/(1+tan(((iπ)/4)))) }        := (π/4) { (( 2( 1+tan^( 2) (((iπ)/4) )))/(1−tan^( 2) (((iπ)/4))))}          := (π/2) ((( 1)/(cos (i(π/2)))))= (π/(2cosh ((π/2) ))) ...■ m.n
I:=0eix+eixex+exdx=0ex(i1)+ex(i+1)1+e2xdx:=e2x=y1201y1i2+y1+i21+ydyy:=1201y1+i2+y1i21+ydy:=1201(1y)(y1+i2+y1i2)1y2dy:=1201y1+i2+y1i2y1i2y1+i21y2dy:=y2=t1401t3i41+t3+i41+1t1i4+1t1+i41tdt:=14(ψ(3i4)+[ψ(3+i4)ψ(1i4)]ψ(1+i4)):=ψ(z)ψ(1z)=πcot(πz)14(πcot((3+i)π4)πcot((3i)π4)):=π4{cot(π4iπ4)+cot(π4+iπ4)}:=π4{1+tan(iπ4)1tan(iπ4)+1tan(iπ4)1+tan(iπ4)}:=π4{2(1+tan2(iπ4))1tan2(iπ4)}:=π2(1cos(iπ2))=π2cosh(π2)◼m.n

Leave a Reply

Your email address will not be published. Required fields are marked *