Question Number 152797 by mnjuly1970 last updated on 01/Sep/21
$$ \\ $$$$\:\:\:{nice}..{mathematics}… \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}… \\ $$$$\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{cos}\:\left({x}\:\right)}{{cosh}\:\left({x}\:\right)}\:{dx}=\frac{\pi}{\:{cosh}\:\left(\frac{\pi}{\mathrm{2}}\:\right)}\:…….\blacksquare\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{prepared}\:::\:\:{m}.{n} \\ $$$$ \\ $$
Answered by mnjuly1970 last updated on 01/Sep/21
$$\:\:\:\:\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:\:{ix}} +{e}^{\:−{ix}} }{{e}^{\:{x}} +{e}^{\:−{x}} }{dx}=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:{x}\left({i}−\mathrm{1}\right)} +{e}^{\:−{x}\left({i}+\mathrm{1}\right)} }{\mathrm{1}+{e}^{\:−\mathrm{2}{x}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\::\overset{{e}^{\:−\mathrm{2}{x}} ={y}} {=}\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{y}^{\:\frac{\mathrm{1}−{i}}{\mathrm{2}}} +{y}^{\frac{\mathrm{1}+{i}}{\mathrm{2}}} }{\mathrm{1}+\:{y}}\:\frac{{dy}}{{y}} \\ $$$$\:\:\:\:\:\::=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{y}^{\:−\frac{\mathrm{1}+{i}}{\mathrm{2}}} +{y}^{\:−\frac{\mathrm{1}−{i}}{\mathrm{2}}} }{\mathrm{1}+{y}}\:{dy} \\ $$$$\:\:\:\:\:\::=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left(\mathrm{1}−{y}\:\right)\left(\:{y}^{\:−\frac{\mathrm{1}+{i}}{\mathrm{2}}} +{y}^{−\frac{\mathrm{1}−{i}}{\mathrm{2}}} \right)}{\mathrm{1}−{y}^{\:\mathrm{2}} }{dy} \\ $$$$\:\:\:\::=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{y}^{\:−\frac{\mathrm{1}+{i}}{\mathrm{2}}} +{y}^{−\frac{\mathrm{1}−{i}}{\mathrm{2}}} −{y}^{\frac{\mathrm{1}−{i}}{\mathrm{2}}} −{y}^{\:\frac{\mathrm{1}+{i}}{\mathrm{2}}} }{\mathrm{1}−{y}^{\:\mathrm{2}} }{dy} \\ $$$$\:\:\:\::\overset{{y}^{\:\mathrm{2}} =\:{t}} {=}\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{t}^{\:\frac{−\mathrm{3}−{i}}{\mathrm{4}}} −\mathrm{1}+{t}^{\frac{−\mathrm{3}+{i}}{\mathrm{4}}} −\mathrm{1}+\mathrm{1}−{t}^{\frac{−\mathrm{1}−{i}}{\mathrm{4}}} +\mathrm{1}−{t}^{\:\frac{−\mathrm{1}+{i}}{\mathrm{4}}} }{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:\:\:\::=\:\frac{\mathrm{1}}{\mathrm{4}}\:\left(\psi\:\left(\frac{\mathrm{3}−{i}}{\mathrm{4}}\:\right)+\left[\psi\left(\frac{\mathrm{3}+{i}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{1}−{i}}{\mathrm{4}}\right)\right]−\psi\left(\frac{\mathrm{1}+{i}}{\mathrm{4}}\right)\right) \\ $$$$\:\:\:\::\overset{\psi\:\left({z}\:\right)−\psi\:\left(\mathrm{1}−{z}\:\right)=\:−\pi\:{cot}\left(\pi{z}\:\right)} {=}\:\frac{\mathrm{1}}{\mathrm{4}}\:\left(−\pi{cot}\:\left(\frac{\left(\mathrm{3}+{i}\right)\pi}{\mathrm{4}}\right)−\pi{cot}\left(\frac{\left(\mathrm{3}−{i}\right)\pi}{\mathrm{4}}\:\right)\right) \\ $$$$\:\:\:\:\::=\frac{\pi}{\mathrm{4}}\:\left\{{cot}\left(\frac{\pi}{\mathrm{4}}\:−\frac{{i}\pi}{\mathrm{4}}\:\right)+\:{cot}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{i}\pi}{\mathrm{4}}\right)\right\} \\ $$$$\:\:\:\:\::=\:\frac{\pi}{\mathrm{4}}\:\left\{\frac{\:\mathrm{1}+{tan}\left(\frac{{i}\pi}{\mathrm{4}}\right)}{\mathrm{1}−{tan}\left(\frac{{i}\pi}{\mathrm{4}}\:\right)}\:+\frac{\mathrm{1}−{tan}\left(\frac{{i}\pi}{\mathrm{4}}\right)}{\mathrm{1}+{tan}\left(\frac{{i}\pi}{\mathrm{4}}\right)}\:\right\} \\ $$$$\:\:\:\:\:\::=\:\frac{\pi}{\mathrm{4}}\:\left\{\:\frac{\:\mathrm{2}\left(\:\mathrm{1}+{tan}^{\:\mathrm{2}} \left(\frac{{i}\pi}{\mathrm{4}}\:\right)\right)}{\mathrm{1}−{tan}^{\:\mathrm{2}} \left(\frac{{i}\pi}{\mathrm{4}}\right)}\right\} \\ $$$$\:\:\:\:\:\:\:\::=\:\frac{\pi}{\mathrm{2}}\:\left(\frac{\:\mathrm{1}}{{cos}\:\left({i}\frac{\pi}{\mathrm{2}}\right)}\right)=\:\frac{\pi}{\mathrm{2}{cosh}\:\left(\frac{\pi}{\mathrm{2}}\:\right)}\:…\blacksquare\:{m}.{n} \\ $$