Menu Close

nice-mathematics-prove-that-i-n-1-1-sinh-2-pin-1-6-1-2pi-ii-n-1-n-e-2pin-1-1-24-




Question Number 114996 by mnjuly1970 last updated on 22/Sep/20
                ...nice   mathematics...       prove that:::                        i::  Σ_(n=1) ^∞ (1/(sinh^2 (πn))) =(1/6) −(1/(2π))    ✓                       ii:: Σ_(n=1) ^∞ (n/(e^(2πn) −1))=(1/(24)) −(1/(8π))  ✓✓                      iii::Σ_(n=1) ^∞ (1/( nsinh(πn))) =(π/(12))−((ln(2))/4) ✓✓✓                  ....    M..n..july..1970 ....
nicemathematicsprovethat:::i::n=11sinh2(πn)=1612πii::n=1ne2πn1=12418πiii::n=11nsinh(πn)=π12ln(2)4.M..n..july..1970.
Commented by maths mind last updated on 24/Sep/20
i will poste all my worck later   just ii) i found2((1/(24))−(1/(8π)))  ...
iwillposteallmyworcklaterjustii)ifound2(12418π)
Answered by Olaf last updated on 23/Sep/20
i::  I_n  = ∫_n ^(n+1) (dx/(sinh^2 (πx)))  I_n  = ∫_n ^(n+1) (coth^2 (πx)−1)dx  I_n  = [(−(1/π)coth(πx)]_n ^(n+1) = (1/π)[coth(πn)−coth(π(n+1))]  I_n   = (1/π)[((cosh(πn))/(sinh(πn)))−((cosh(π(n+1)))/(sinh(π(n+1))))]  I_n   =(1/π) ((sinh(π(n+1))cosh(πn)−cosh(π(n+1)+cosh(πn))/(sinh(πn)sinh(π(n+1))))  I_n   = (1/π)[((sinh(π(n+1)−πn])/(sinh(πn)sinh(π(n+1))))]  I_n   = (1/π)[((sinh(π))/(sinh(πn)sinh(π(n+1))))]  (π/(sinh(π)))I_n  = (1/(sinh(πn)sinh(π(n+1))))  (π/(sinh(π)))I_(n+1)  ≤ (1/(sinh^2 (π(n+1)))) ≤ (π/(sinh(π)))I_n   (π/(sinh(π)))Σ_(n=1) ^∞ I_(n+1)  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (π(n+1)))) ≤Σ_(n=1) ^∞  (π/(sinh(π)))I_n   (π/(sinh(π)))Σ_(n=2) ^∞ I_n  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn)))−(1/(sinh^2 (π))) ≤Σ_(n=1) ^∞  (π/(sinh(π)))I_n   (π/(sinh(π)))[−(1/π)coth(πx)]_2 ^∞  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn)))−(1/(sinh^2 (π))) ≤ (π/(sinh(π)))[−(1/π)coth(πx)]_1 ^∞   (1/(sinh(π)))[coth(2π)−1] ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn)))−(1/(sinh^2 (π))) ≤ (1/(sinh(π)))[coth(π)−1]  (1/(sinh(π)))[coth(2π)−1+(1/(sinh(π)))] ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn))) ≤ (1/(sinh(π)))[coth(π)−1+(1/(sinh(π)))]_1 ^∞   ((coth(2π)sinh(π)−sinh(π)+1)/(sinh^2 (π)))  ≤ Σ_(n=1) ^∞ (1/(sinh^2 (πn))) ≤ [((cosh(π)−sinh(π)+1)/(sinh^2 (π)))]  I tried but may be it is not the good way.
i::In=nn+1dxsinh2(πx)In=nn+1(coth2(πx)1)dxIn=[(1πcoth(πx)]nn+1=1π[coth(πn)coth(π(n+1))]In=1π[cosh(πn)sinh(πn)cosh(π(n+1))sinh(π(n+1))]In=1πsinh(π(n+1))cosh(πn)cosh(π(n+1)+cosh(πn)sinh(πn)sinh(π(n+1))In=1π[sinh(π(n+1)πn]sinh(πn)sinh(π(n+1))]In=1π[sinh(π)sinh(πn)sinh(π(n+1))]πsinh(π)In=1sinh(πn)sinh(π(n+1))πsinh(π)In+11sinh2(π(n+1))πsinh(π)Inπsinh(π)n=1In+1n=11sinh2(π(n+1))n=1πsinh(π)Inπsinh(π)n=2Inn=11sinh2(πn)1sinh2(π)n=1πsinh(π)Inπsinh(π)[1πcoth(πx)]2n=11sinh2(πn)1sinh2(π)πsinh(π)[1πcoth(πx)]11sinh(π)[coth(2π)1]n=11sinh2(πn)1sinh2(π)1sinh(π)[coth(π)1]1sinh(π)[coth(2π)1+1sinh(π)]n=11sinh2(πn)1sinh(π)[coth(π)1+1sinh(π)]1coth(2π)sinh(π)sinh(π)+1sinh2(π)n=11sinh2(πn)[cosh(π)sinh(π)+1sinh2(π)]Itriedbutmaybeitisnotthegoodway.
Answered by maths mind last updated on 24/Sep/20
ii)  Σ(n/(e^(2πn) −1))  let f(z)=(z/(e^(2πz) −1))    holomorphic cunction over C−{iZ}  it has rvable singularity at origine  lim_(z→0)   (z/(e^(2πz) −1))=(1/(2π))  we can use  Σ_(n≥0) f(n)=(1/(2π))+Σ_(n≥1) f(n)  Σ_(n≥0) f(n)=∫_0 ^∞ f(x)dx+((f(0))/2)+i∫_0 ^∞ ((f(it)−f(−it))/(e^(2πt) −1))dt Abel −plana formula  f(it)−f(−it)  =((it)/(e^(2iπt) −1))+((it)/(e^(−2iπt) −1)) =−it⇒i∫_0 ^∞ ((f(it)−f(−it))/(e^(2πt) −1))dt=∫_0 ^∞ (x/(e^(2πx) −1))dx  Σ_(n≥0) f(n)_(=S) =(1/(2π))+Σ_(n≥1) f(n)=(1/(2π))+Σ_(n≥1) f(n)=(1/(4π))+2∫_0 ^∞ ((xdx)/(e^(2πx) −1))  =2∫_0 ^∞ ((xdx)/(e^(2πx) −1)),2πx=t⇒dx=(dt/(2π))⇒  S=(1/(4π))−(1/(2π))+(1/(2π^2 ))∫_0 ^∞ (t/(e^t −1))dt=−(1/(4π))+(1/(2π^2 ))ζ(2)Γ(2)=−(1/(4π))+(1/(12)).  Σ(n/(e^(2πn) −1))=(1/(12))−(1/(4π))
ii)Σne2πn1letf(z)=ze2πz1holomorphiccunctionoverC{iZ}ithasrvablesingularityatoriginelimz0ze2πz1=12πwecanusen0f(n)=12π+n1f(n)n0f(n)=0f(x)dx+f(0)2+i0f(it)f(it)e2πt1dtAbelplanaformulaf(it)f(it)=ite2iπt1+ite2iπt1=iti0f(it)f(it)e2πt1dt=0xe2πx1dxMissing \left or extra \right=20xdxe2πx1,2πx=tdx=dt2πS=14π12π+12π20tet1dt=14π+12π2ζ(2)Γ(2)=14π+112.Σne2πn1=11214π

Leave a Reply

Your email address will not be published. Required fields are marked *