nice-mathematics-prove-that-i-n-1-1-sinh-2-pin-1-6-1-2pi-ii-n-1-n-e-2pin-1-1-24- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 114996 by mnjuly1970 last updated on 22/Sep/20 …nicemathematics…provethat:::i::∑∞n=11sinh2(πn)=16−12π✓ii::∑∞n=1ne2πn−1=124−18π✓✓iii::∑∞n=11nsinh(πn)=π12−ln(2)4✓✓✓….M..n..july..1970…. Commented by maths mind last updated on 24/Sep/20 iwillposteallmyworcklaterjustii)ifound2(124−18π)… Answered by Olaf last updated on 23/Sep/20 i::In=∫nn+1dxsinh2(πx)In=∫nn+1(coth2(πx)−1)dxIn=[(−1πcoth(πx)]nn+1=1π[coth(πn)−coth(π(n+1))]In=1π[cosh(πn)sinh(πn)−cosh(π(n+1))sinh(π(n+1))]In=1πsinh(π(n+1))cosh(πn)−cosh(π(n+1)+cosh(πn)sinh(πn)sinh(π(n+1))In=1π[sinh(π(n+1)−πn]sinh(πn)sinh(π(n+1))]In=1π[sinh(π)sinh(πn)sinh(π(n+1))]πsinh(π)In=1sinh(πn)sinh(π(n+1))πsinh(π)In+1⩽1sinh2(π(n+1))⩽πsinh(π)Inπsinh(π)∑∞n=1In+1⩽∑∞n=11sinh2(π(n+1))⩽∑∞n=1πsinh(π)Inπsinh(π)∑∞n=2In⩽∑∞n=11sinh2(πn)−1sinh2(π)⩽∑∞n=1πsinh(π)Inπsinh(π)[−1πcoth(πx)]2∞⩽∑∞n=11sinh2(πn)−1sinh2(π)⩽πsinh(π)[−1πcoth(πx)]1∞1sinh(π)[coth(2π)−1]⩽∑∞n=11sinh2(πn)−1sinh2(π)⩽1sinh(π)[coth(π)−1]1sinh(π)[coth(2π)−1+1sinh(π)]⩽∑∞n=11sinh2(πn)⩽1sinh(π)[coth(π)−1+1sinh(π)]1∞coth(2π)sinh(π)−sinh(π)+1sinh2(π)⩽∑∞n=11sinh2(πn)⩽[cosh(π)−sinh(π)+1sinh2(π)]Itriedbutmaybeitisnotthegoodway. Answered by maths mind last updated on 24/Sep/20 ii)Σne2πn−1letf(z)=ze2πz−1holomorphiccunctionoverC−{iZ}ithasrvablesingularityatoriginelimz→0ze2πz−1=12πwecanuse∑n⩾0f(n)=12π+∑n⩾1f(n)∑n⩾0f(n)=∫0∞f(x)dx+f(0)2+i∫0∞f(it)−f(−it)e2πt−1dtAbel−planaformulaf(it)−f(−it)=ite2iπt−1+ite−2iπt−1=−it⇒i∫0∞f(it)−f(−it)e2πt−1dt=∫0∞xe2πx−1dxMissing \left or extra \rightMissing \left or extra \right=2∫0∞xdxe2πx−1,2πx=t⇒dx=dt2π⇒S=14π−12π+12π2∫0∞tet−1dt=−14π+12π2ζ(2)Γ(2)=−14π+112.Σne2πn−1=112−14π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: evaluate-x-3-J-3-x-dx-Next Next post: nice-math-if-y-cos-2x-1-2-then-prove-y-y-3y-5-m-n-july-1970- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.