Menu Close

now-the-way-is-clear-also-try-this-one-cos-x-sin-2-x-sin-2x-dx-




Question Number 36814 by MJS last updated on 06/Jun/18
now the way is clear, also try this one:  ∫((cos x)/(sin^2  x (√(sin 2x))))dx
$$\mathrm{now}\:\mathrm{the}\:\mathrm{way}\:\mathrm{is}\:\mathrm{clear},\:\mathrm{also}\:\mathrm{try}\:\mathrm{this}\:\mathrm{one}: \\ $$$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}\:\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}{dx} \\ $$
Answered by math1967 last updated on 06/Jun/18
(1/( (√2)))∫((cosx)/(sin^2 x(√(sin xcos x))))dx  =(1/( (√2)))∫(√(cotx )) cosec^2 xdx  =−(1/( (√2)))∫(√(cotx ))d(cotx)  =−(1/( (√2)))×(2/3)×(cotx)^(3/2)  +c
$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\frac{{cosx}}{{sin}^{\mathrm{2}} {x}\sqrt{\mathrm{sin}\:{x}\mathrm{cos}\:{x}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\sqrt{{cotx}\:}\:\mathrm{cosec}\:^{\mathrm{2}} {xdx} \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int\sqrt{{cotx}\:}{d}\left({cotx}\right) \\ $$$$=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}×\frac{\mathrm{2}}{\mathrm{3}}×\left({cotx}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *