Menu Close

Number-of-distributions-of-12-different-things-be-taken-to-3different-boxes-so-as-1-5-things-in-1st-box-exactly-2-5-things-in-any-one-box-




Question Number 179738 by SLVR last updated on 01/Nov/22
Number of distributions of  12 different things be taken to  3different boxes so as  1)5 things in 1st box exactly  2)5 things in any one box?
Numberofdistributionsof12differentthingsbetakento3differentboxessoas1)5thingsin1stboxexactly2)5thingsinanyonebox?
Answered by SLVR last updated on 01/Nov/22
I am getting 12_C_5  ×2^7  for  1st and but 2nd  question.=>>please
Iamgetting12C5×27for1standbut2ndquestion.=>>please
Answered by mr W last updated on 03/Nov/22
1)  5 things for the 1st box: C_5 ^(12)   7 things into two boxes: 2^7   ⇒C_5 ^(12) ×2^7 =101376  2)  not clear,  what you mean.  at least or at most or exactly 5 things  in one of the three boxes?
1)5thingsforthe1stbox:C5127thingsintotwoboxes:27C512×27=1013762)notclear,whatyoumean.atleastoratmostorexactly5thingsinoneofthethreeboxes?
Commented by SLVR last updated on 02/Nov/22
sir..so kind of you..  here in 2nd i need 5 exactly  but what if    a)if at least one  in 2nd box?  b)if  at most 7 in 2nd box  please sir Prof.Mr.W
sir..sokindofyou..herein2ndineed5exactlybutwhatifa)ifatleastonein2ndbox?b)ifatmost7in2ndboxpleasesirProf.Mr.W
Commented by mr W last updated on 03/Nov/22
2a)  say in one and only one box there are  exactly 5 balls.  to divide 12 balls into three boxes  there are following possibilities:  5+0+7 ✓ ⇒((12!)/(5!7!))×3!  5+1+6 ✓ ⇒((12!)/(5!6!))×3!  5+2+5 ×  5+3+4 ✓ ⇒((12!)/(5!3!4!))×3!  ⇒answer is       ((12!3!)/(5!))×((1/(7!))+(1/(6!))+(1/(3!4!)))=204 336
2a)sayinoneandonlyoneboxthereareexactly5balls.todivide12ballsintothreeboxestherearefollowingpossibilities:5+0+712!5!7!×3!5+1+612!5!6!×3!5+2+5×5+3+412!5!3!4!×3!answeris12!3!5!×(17!+16!+13!4!)=204336
Commented by mr W last updated on 03/Nov/22
2b)  say in one box at least 5 balls:  12+0+0⇒1×((3!)/(2!))=3  11+1+0 ⇒((12!)/(11!))×3!=72  10+2+0 ⇒((12!)/(10!2!))×3!=396  10+1+1 ⇒((12!)/(10!2!))×3!=396  9+3+0 ⇒((12!)/(9!3!))×3!=1 320  9+2+1 ⇒((12!)/(9!2!))×3!=3 960  8+4+0 ⇒((12!)/(8!4!))×3!=2 970  8+3+1 ⇒((12!)/(8!3!))×3!=11 880  8+2+2  ⇒((12!)/(8!(2!)^2 2!))×3!=8 910  7+5+0 ⇒((12!)/(7!5!))×3!=4 752  7+4+1 ⇒((12!)/(7!4!))×3!=23 760  7+3+2 ⇒((12!)/(7!3!2!))×3!=47 520  6+6+0 ⇒((12!)/((6!)^2 2!))×3!=2 772  6+5+1 ⇒((12!)/(6!5!))×3!=33 264  6+4+2 ⇒((12!)/(6!4!2!))×3!=83 160  6+3+3 ⇒((12!)/(6!(3!)^2 2!))×3!=55 440  5+5+2 ⇒((12!)/((5!)^2 2!2!))×3!=49896  5+4+3 ⇒((12!)/(5!4!3!))×3!=166 320  totally:  496 791
2b)sayinoneboxatleast5balls:12+0+01×3!2!=311+1+012!11!×3!=7210+2+012!10!2!×3!=39610+1+112!10!2!×3!=3969+3+012!9!3!×3!=13209+2+112!9!2!×3!=39608+4+012!8!4!×3!=29708+3+112!8!3!×3!=118808+2+212!8!(2!)22!×3!=89107+5+012!7!5!×3!=47527+4+112!7!4!×3!=237607+3+212!7!3!2!×3!=475206+6+012!(6!)22!×3!=27726+5+112!6!5!×3!=332646+4+212!6!4!2!×3!=831606+3+312!6!(3!)22!×3!=554405+5+212!(5!)22!2!×3!=498965+4+312!5!4!3!×3!=166320totally:496791
Commented by SLVR last updated on 02/Nov/22
Now...i got the clarity..so  kind of sir..thanks a lot
Nowigottheclarity..sokindofsir..thanksalot
Commented by mr W last updated on 03/Nov/22
generating functions are powerful  tools for solving such questions.  we don′t need to enumerate the  concrete combinations as i did above.  examples:  1)  coef. of term x^(12)  in  12!×(x^5 /(5!))×(e^x )^2   which is 101 376.
generatingfunctionsarepowerfultoolsforsolvingsuchquestions.wedontneedtoenumeratetheconcretecombinationsasididabove.examples:1)coef.oftermx12in12!×x55!×(ex)2whichis101376.
Commented by mr W last updated on 03/Nov/22
Commented by mr W last updated on 03/Nov/22
2a)  coef. of term x^(12)  in  3×12!×(x^5 /(5!))×(e^x −(x^5 /(5!)))^2   which is 204 336.
2a)coef.oftermx12in3×12!×x55!×(exx55!)2whichis204336.
Commented by mr W last updated on 03/Nov/22
Commented by mr W last updated on 03/Nov/22
2b)  without restriction: 3^(12) =531 441 ways  all boxes have less than 5 balls, i.e.  each has 4 balls: ((12!)/((4!)^3 ))=34650 ways  one box has at least 5 balls:  ⇒531 441−34 650=496 791    or using generating functions:
2b)withoutrestriction:312=531441waysallboxeshavelessthan5balls,i.e.eachhas4balls:12!(4!)3=34650waysoneboxhasatleast5balls:53144134650=496791orusinggeneratingfunctions:
Commented by mr W last updated on 03/Nov/22
Commented by mr W last updated on 03/Nov/22

Leave a Reply

Your email address will not be published. Required fields are marked *