Menu Close

Number-of-integers-n-for-which-3x-3-25x-n-0-has-three-real-roots-is-




Question Number 46974 by rahul 19 last updated on 03/Nov/18
Number of integers n for which   3x^3 −25x+n=0 has three real roots is ?
Numberofintegersnforwhich3x325x+n=0hasthreerealrootsis?
Commented by rahul 19 last updated on 03/Nov/18
Ans. is 55 but i′m getting infinite...  plss check my method....  f(x)= 3x^3 −25x+n=0  f′(x)= 9x^2 −25=0  ⇒ x= ∓  (√(5/3))   ⇒ f′(x) has 2 real roots  ⇒ definitely f(x) will 3 real roots ...  hence n can be any integer→infinite...
Ans.is55butimgettinginfiniteplsscheckmymethod.f(x)=3x325x+n=0f(x)=9x225=0x=53f(x)has2realrootsdefinitelyf(x)will3realrootshencencanbeanyintegerinfinite
Answered by MJS last updated on 03/Nov/18
x^3 +px+q=0  D=(p^3 /(27))+(q^2 /4)  D<0 ⇔ 3 real roots    in this case  x^3 −((25)/3)x+(n/3)=0  D=(n^2 /(36))−((15625)/(729))<0 ⇒ −((250)/9)≤n≤((250)/9)  n∈Z ⇒ −27≤n≤27 ⇒ 55 integer values for n
x3+px+q=0D=p327+q24D<03realrootsinthiscasex3253x+n3=0D=n23615625729<02509n2509nZ27n2755integervaluesforn
Commented by rahul 19 last updated on 04/Nov/18
thanks sir ����
Answered by ajfour last updated on 03/Nov/18
f(x)=3x^3 −25x  f ′(x)=9x^2 −25   f ′(x)=0  ⇒  x= ±(5/3), 0  f((5/3))=3((5/3))^3 −25((5/3))             = ((125)/9)−((125)/3) = − ((250)/9)  so  having three real roots we  can raise or lower f(x) by    n< ((250)/9)   ⇒    n∈ (−((250)/9) , ((250)/9))  ⇒ n∈ {−27,−26,....,−1,0, 1,..27}  ⇒      55 integral values.
f(x)=3x325xf(x)=9x225f(x)=0x=±53,0f(53)=3(53)325(53)=12591253=2509sohavingthreerealrootswecanraiseorlowerf(x)byn<2509n(2509,2509)n{27,26,.,1,0,1,..27}55integralvalues.
Commented by rahul 19 last updated on 04/Nov/18
thanks sir �� ��

Leave a Reply

Your email address will not be published. Required fields are marked *