Menu Close

Number-of-integral-values-of-x-for-which-pi-2-tan-1-x-4-x-4-x-10-x-x-1-lt-0-




Question Number 34029 by rahul 19 last updated on 29/Apr/18
Number of integral values of x for  which   ((((π/2^(tan^(−1) x) )−4)(x−4)(x−10))/(x! − (x−1)!)) < 0
Numberofintegralvaluesofxforwhich(π2tan1x4)(x4)(x10)x!(x1)!<0
Commented by rahul 19 last updated on 29/Apr/18
x!= 1×2×3.........×(x−1)×x.
x!=1×2×3×(x1)×x.
Answered by MJS last updated on 29/Apr/18
f(x)=((((π/2^(tan^(−1) x) )−4)(x−4)(x−10))/(x! − (x−1)!))<0    x!−(x−1)!>0 ∀ x∈N  ⇒ ((π/2^(tan^(−1) x) )−4)(x−4)(x−10)<0    (π/2^(tan^(−1) x) )−4=((π−4×2^(tan^(−1)  x) )/2^(tan^(−1)  x) )  tan^(−1)  x>0 ⇒ 2^(tan^(−1)  x) >1 ⇒ ((π−4×2^(tan^(−1)  x) )/2^(tan^(−1)  x) )<0 ∀x∈N  ⇒ (x−4)(x−10)>0    x−4<0 ∧ x−10<0 ⇒ x<4  x−4>0 ∧ x−10>0 ⇒ x>10    f(x)≥0 ⇒ 4≤x≤10  f(x) is not defined for x=0 ∧ x=1  f(x)<0 ⇒ x∈{2; 3}∪{x∈N∣x>10}
f(x)=(π2tan1x4)(x4)(x10)x!(x1)!<0x!(x1)!>0xN(π2tan1x4)(x4)(x10)<0π2tan1x4=π4×2tan1x2tan1xtan1x>02tan1x>1π4×2tan1x2tan1x<0xN(x4)(x10)>0x4<0x10<0x<4x4>0x10>0x>10f(x)04x10f(x)isnotdefinedforx=0x=1f(x)<0x{2;3}{xNx>10}
Commented by rahul 19 last updated on 29/Apr/18
You are getting this answer after   assuming tan^(−1) x > 0 , right ?  what if it′s <0 ?
Youaregettingthisanswerafterassumingtan1x>0,right?whatifits<0?
Commented by MJS last updated on 29/Apr/18
tan^(−1)  x≥0 for all x≥0  and x! is not defined for x<0
tan1x0forallx0andx!isnotdefinedforx<0
Commented by rahul 19 last updated on 29/Apr/18
Ohh, yes!  Thank you sir.
Ohh,yes!Thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *