Menu Close

Number-of-ways-n-differrnt-things-be-distributed-in-r-identical-boxes-so-as-1-empty-box-is-allowed-2-empty-box-not-allowed-Number-of-ways-n-identical-things-be-distributed-to-r-identical-boxes-s




Question Number 165385 by SLVR last updated on 31/Jan/22
Number of  ways..n   differrnt  things be distributed  in r identical boxes so as  1)empty box is allowed  2)empty box not allowed  Number of ways...n identical  things be distributed to r  identical boxes so as  1)empty box allowed  2)empty box not allowed
$${Number}\:{of}\:\:{ways}..{n}\: \\ $$$${differrnt}\:\:{things}\:{be}\:{distributed} \\ $$$${in}\:{r}\:{identical}\:{boxes}\:{so}\:{as} \\ $$$$\left.\mathrm{1}\right){empty}\:{box}\:{is}\:{allowed} \\ $$$$\left.\mathrm{2}\right){empty}\:{box}\:{not}\:{allowed} \\ $$$${Number}\:{of}\:{ways}…{n}\:{identical} \\ $$$${things}\:{be}\:{distributed}\:{to}\:{r} \\ $$$${identical}\:{boxes}\:{so}\:{as} \\ $$$$\left.\mathrm{1}\right){empty}\:{box}\:{allowed} \\ $$$$\left.\mathrm{2}\right){empty}\:{box}\:{not}\:{allowed} \\ $$$$ \\ $$
Commented by SLVR last updated on 31/Jan/22
kindly...provide proof   if  possible
$${kindly}…{provide}\:{proof}\:\:\:{if} \\ $$$${possible} \\ $$
Answered by mr W last updated on 01/Feb/22
I.  n different objects into r identical  boxes  a) non empty box   S(n,r) ←stirling number of the second kind  b) empty box allowed  S(n,1)+S(n,2)+...+S(n,r)    II.  n identical objects into r identical  a) non empty box  p(n,r) ←number of partions of n into r parts  b) empty box allowed  p(n,1)+p(n,2)+...+p(n,r)
$${I}. \\ $$$${n}\:{different}\:{objects}\:{into}\:{r}\:{identical} \\ $$$${boxes} \\ $$$$\left.{a}\right)\:{non}\:{empty}\:{box}\: \\ $$$${S}\left({n},{r}\right)\:\leftarrow{stirling}\:{number}\:{of}\:{the}\:{second}\:{kind} \\ $$$$\left.{b}\right)\:{empty}\:{box}\:{allowed} \\ $$$${S}\left({n},\mathrm{1}\right)+{S}\left({n},\mathrm{2}\right)+…+{S}\left({n},{r}\right) \\ $$$$ \\ $$$${II}. \\ $$$${n}\:{identical}\:{objects}\:{into}\:{r}\:{identical} \\ $$$$\left.{a}\right)\:{non}\:{empty}\:{box} \\ $$$${p}\left({n},{r}\right)\:\leftarrow{number}\:{of}\:{partions}\:{of}\:{n}\:{into}\:{r}\:{parts} \\ $$$$\left.{b}\right)\:{empty}\:{box}\:{allowed} \\ $$$${p}\left({n},\mathrm{1}\right)+{p}\left({n},\mathrm{2}\right)+…+{p}\left({n},{r}\right) \\ $$
Commented by SLVR last updated on 02/Feb/22
So kind of you sir...we are blessed  Here i am new to S(n,r) and   i tried with Google search..  but i could not get through..  kidly explain S(9,5) and S(5,3)  also p(n,r) with p(5,3).Kindly  bless me sir...
$${So}\:{kind}\:{of}\:{you}\:{sir}…{we}\:{are}\:{blessed} \\ $$$${Here}\:{i}\:{am}\:{new}\:{to}\:{S}\left({n},{r}\right)\:{and}\: \\ $$$${i}\:{tried}\:{with}\:{Google}\:{search}.. \\ $$$${but}\:{i}\:{could}\:{not}\:{get}\:{through}.. \\ $$$${kidly}\:{explain}\:{S}\left(\mathrm{9},\mathrm{5}\right)\:{and}\:{S}\left(\mathrm{5},\mathrm{3}\right) \\ $$$${also}\:{p}\left({n},{r}\right)\:{with}\:{p}\left(\mathrm{5},\mathrm{3}\right).{Kindly} \\ $$$${bless}\:{me}\:{sir}… \\ $$
Commented by mr W last updated on 02/Feb/22
https://en.m.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
Commented by mr W last updated on 02/Feb/22
https://en.m.wikipedia.org/wiki/Partition_(number_theory)
Commented by SLVR last updated on 06/Feb/22
So kind of you prof.W...God bless you
$${So}\:{kind}\:{of}\:{you}\:{prof}.{W}…{God}\:{bless}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *