Menu Close

o-h-ans-1-x-2-e-y-x-y-2-dx-xy-dy-2-f-x-x-x-2-e-x-2-f-1-1-e-g-x-4-e-4-1-x-e-t-2-f-t-dt-find-f-2-g-2-




Question Number 109086 by bobhans last updated on 21/Aug/20
   ♭_→ o_→ ♭h_⊸ ans_⊸   (1) (x^2 e^(−(y/x)) +y^2 ) dx = xy dy   (2)(((f(x))/x))′ = x^2 e^(−x^2 )  ; f(1) = (1/e)          g(x) = (4/e^4 )∫_1 ^x e^t^2   f(t) dt . find f(2)−g(2)
$$\:\:\:\underset{\rightarrow} {\flat}\underset{\rightarrow} {{o}}\flat\underset{\multimap} {{h}an}\underset{\multimap} {{s}} \\ $$$$\left(\mathrm{1}\right)\:\left({x}^{\mathrm{2}} {e}^{−\frac{{y}}{{x}}} +{y}^{\mathrm{2}} \right)\:{dx}\:=\:{xy}\:{dy}\: \\ $$$$\left(\mathrm{2}\right)\left(\frac{{f}\left({x}\right)}{{x}}\right)'\:=\:{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{2}} } \:;\:{f}\left(\mathrm{1}\right)\:=\:\frac{\mathrm{1}}{{e}}\: \\ $$$$\:\:\:\:\:\:\:{g}\left({x}\right)\:=\:\frac{\mathrm{4}}{{e}^{\mathrm{4}} }\underset{\mathrm{1}} {\overset{{x}} {\int}}{e}^{{t}^{\mathrm{2}} } \:{f}\left({t}\right)\:{dt}\:.\:{find}\:{f}\left(\mathrm{2}\right)−{g}\left(\mathrm{2}\right) \\ $$
Answered by bemath last updated on 21/Aug/20
   ((▽♭eMath△)/(°•−−−−°•))  (1) set y = vx ⇒dy=x dv + v dx  ⇒(x^2 e^(−v) + v^2  x^2 )dx = vx^2  (x dv+v dx )  (e^(−v)  + v^2  )dx = vx dv +v^2  dx  e^(−v)  dx = vx dv   (dx/x) = v e^v  dv ⇒∫ (dx/x) = ∫ v e^v  dv   ln ∣x∣ + c = (v−1).e^v   (((y−x)/x)).e^(y/x)  = ln ∣Cx∣   (y−x).e^(y/x) = x.ln ∣Cx∣
$$\:\:\:\frac{\bigtriangledown\flat{e}\mathcal{M}{ath}\bigtriangleup}{°\bullet−−−−°\bullet} \\ $$$$\left(\mathrm{1}\right)\:{set}\:{y}\:=\:{vx}\:\Rightarrow{dy}={x}\:{dv}\:+\:{v}\:{dx} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} {e}^{−{v}} +\:{v}^{\mathrm{2}} \:{x}^{\mathrm{2}} \right){dx}\:=\:{vx}^{\mathrm{2}} \:\left({x}\:{dv}+{v}\:{dx}\:\right) \\ $$$$\left({e}^{−{v}} \:+\:{v}^{\mathrm{2}} \:\right){dx}\:=\:{vx}\:{dv}\:+{v}^{\mathrm{2}} \:{dx} \\ $$$${e}^{−{v}} \:{dx}\:=\:{vx}\:{dv}\: \\ $$$$\frac{{dx}}{{x}}\:=\:{v}\:{e}^{{v}} \:{dv}\:\Rightarrow\int\:\frac{{dx}}{{x}}\:=\:\int\:{v}\:{e}^{{v}} \:{dv}\: \\ $$$$\mathrm{ln}\:\mid{x}\mid\:+\:{c}\:=\:\left({v}−\mathrm{1}\right).{e}^{{v}} \\ $$$$\left(\frac{{y}−{x}}{{x}}\right).{e}^{\frac{{y}}{{x}}} \:=\:\mathrm{ln}\:\mid{Cx}\mid\: \\ $$$$\left({y}−{x}\right).{e}^{\frac{{y}}{{x}}} =\:{x}.\mathrm{ln}\:\mid{Cx}\mid\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *