Menu Close

o-hans-1-x-x-1-4-1-4-2-a-1-b-2-c-3-a-b-90-b-c-60-a-c-120-then-a-b-c-3-x-log-




Question Number 109584 by bobhans last updated on 24/Aug/20
   ((−♭o♭−)/(hans))  (1)(√(x−(√(x−(1/4))))) ≥ (1/4)  (2)∣a^→ ∣ = 1, ∣b^→ ∣ = 2 , ∣c^→ ∣=3 , ∠(a^→ ,b^→ )=90°          ∠(b^→ ,c^→ )=60° , ∠(a^→ ,c^→ )=120° , then         ∣a^→ +b^→ −c^→ ∣=?  (3) { ((x^(log _3 (y)) +y^(log _3 (x)) =18)),((log _3 (x)+log _3 (y)=3)) :} . Find the solution
ohans(1)xx1414(2)a=1,b=2,c∣=3,(a,b)=90°(b,c)=60°,(a,c)=120°,thena+bc∣=?(3){xlog3(y)+ylog3(x)=18log3(x)+log3(y)=3.Findthesolution
Commented by bemath last updated on 25/Aug/20
    •((♭ε)/(math))•  (3)  { ((y^(log _3 (x)) +y^(log _3 (x)) =18)),((log _3 (x)+log _3 (y) = 3)) :}→ { ((y^(log _3 (x)) =9)),((log _3 (x)+log _3 (y)=3)) :}  log _3 (y)×log _3 (x)=2 ∧log _3 (x)+log _3 (y)=3  let  { ((log _3 (x)=p)),((log _3 (y)=q)) :}→ { ((pq=2)),((p+q=3)) :}  ⇔p(3−p)=2 →p^2 −3p+2=0   { ((p=1→q=2)),((p=2→q=1)) :}→ { ((x=3 ∧y=9)),((x=9 ∧y =3)) :}
ϵmath(3){ylog3(x)+ylog3(x)=18log3(x)+log3(y)=3{ylog3(x)=9log3(x)+log3(y)=3log3(y)×log3(x)=2log3(x)+log3(y)=3let{log3(x)=plog3(y)=q{pq=2p+q=3p(3p)=2p23p+2=0{p=1q=2p=2q=1{x=3y=9x=9y=3
Answered by bemath last updated on 24/Aug/20
   ((↭♭ε↭)/(ΔMathΔ))  (2)consider a^→ .a^→  = ∣a^→ ∣^2   (a^→ +b^→ −c^→ )○(a^→ +b^→ −c^→ )= ∣a^→ +b^→ −c^→ ∣^2   ∣a^→ ∣^2 +2 a^→ ○b^→ −2 a^→ ○c^→ +∣b^→ ∣^2 −2 b^→ ○c^→ +∣c^→ ∣=  ∣a^→ +b^→ −c^→ ∣^2   1+4+9+0−2(1)(3)(−(1/2))−2(2)(3)((1/2))=  ∣a^→ +b^→ −c^→ ∣^2   14+3−6=∣a^→ +b^→ −c^→ ∣^2   ∴ ∣a^→ +b^→ −c^→ ∣ = (√(11))
ϵΔMathΔ(2)considera.a=a2(a+bc)(a+bc)=a+bc2a2+2ab2ac+b22bc+c∣=a+bc21+4+9+02(1)(3)(12)2(2)(3)(12)=a+bc214+36=∣a+bc2a+bc=11
Commented by bobhans last updated on 25/Aug/20
yeahh...
yeahh
Answered by john santu last updated on 24/Aug/20
(√(x−(√(x−(1/4))))) ≥ (1/4)  ⇒x−(√(x−(1/4))) ≥ (1/(16))  ⇒x−(1/(16)) ≥ (√(x−(1/4))) ; x > (1/(16)) (1)  ⇒x^2 −(x/8)+(1/(256)) ≥x−(1/4)  ⇒x^2 −((9x)/8)+((65)/(256)) ≥ 0  ⇒(x−(9/(16)))^2 −((81)/(256))+((65)/(256)) ≥ 0  ⇒(x−(9/(16)))^2 −((4/(16)))^2 ≥ 0  ⇒(x−((13)/(16)))(x−(5/(16)))≥0  ⇒x ≤ (5/(16)) ∪ x ≥ ((13)/(16)) (2)  ⇒(√(x−(1/4))) define for x ≥ (4/(16)) (3)  solution we get from (1)∩(2)∩(3)  x ∈ [ (1/4), (5/(16)) ] ∪ [ ((13)/(16)) ,∞ )
xx1414xx14116x116x14;x>116(1)x2x8+1256x14x29x8+652560(x916)281256+652560(x916)2(416)20(x1316)(x516)0x516x1316(2)x14defineforx416(3)solutionwegetfrom(1)(2)(3)x[14,516][1316,)
Commented by bobhans last updated on 25/Aug/20
yuhhuuyy
yuhhuuyy
Answered by 1549442205PVT last updated on 24/Aug/20
Solve the inequality  (1)(√(x−(√(x−(1/4))))) ≥ (1/4)  We need must have the condition that  x≥(1/4) in order to define the root.Under  this condition squaring two sides of   the inequality we get an equivalent  inequality  x−(√(x−(1/4))) ≥(1/(16))⇔x−(1/(16))≥(√(x−(1/4)))  Since both sides are positive,squaring  again we get   ⇔x^2 −(1/8)x+(1/(256))≥x−(1/4)  ⇔256x^2 −288x+65≥0(2)  Δ′=144^2 −256.65=16^2 .(9^2 −65)=16^3   (√Δ) =64,x_(1,2) =((144±64)/(256))∈{((13)/(16));(5/(16))}  ⇒(2)⇔x∈(−∞;(5/(16))]∪[((13)/(16));+∞)  Combining to the condition x≥(1/4)  we get roots of given inequality be  x∈[(1/4);(5/(16))]∪[((13)/(16));+∞)  2)∣a^(→) +b^(→) −c^(→) ∣^2 =a^2 +b^2 +c^2 +2a^(→) .b^(→) −2a^(→) .c^(→)   −2b^(→) .c^(→) =1^2 +2^2 +3^2 +2∣a∣.∣b∣cos90°  −2∣a∣.∣c∣cos120°−2∣b∣.∣c∣cos60°  =14+2.1.2×0−2×1×3(−0.5)  −2.2.3.0.5=14+3−6=11  Hence,∣a^(→) +b^(→) −c^(→) ∣=(√(11))
Solvetheinequality(1)xx1414Weneedmusthavetheconditionthatx14inordertodefinetheroot.Underthisconditionsquaringtwosidesoftheinequalitywegetanequivalentinequalityxx14116x116x14Sincebothsidesarepositive,squaringagainwegetx218x+1256x14256x2288x+650(2)Δ=1442256.65=162.(9265)=163Δ=64,x1,2=144±64256{1316;516}(2)x(;516][1316;+)Combiningtotheconditionx14wegetrootsofgiveninequalitybex[14;516][1316;+)2)a+bc2=a2+b2+c2+2a.b2a.c2b.c=12+22+32+2a.bcos90°2a.ccos120°2b.ccos60°=14+2.1.2×02×1×3(0.5)2.2.3.0.5=14+36=11Hence,a+bc∣=11

Leave a Reply

Your email address will not be published. Required fields are marked *