Menu Close

Obtain-a-reduction-formulae-for-I-n-0-1-ln-x-n-dx-find-I-2-0-1-ln-x-2-dx-




Question Number 122186 by physicstutes last updated on 14/Nov/20
Obtain a reduction formulae for      I_n  = ∫_0 ^1  (ln x)^n dx   find I_2 = ∫_0 ^1  (ln x)^2  dx
ObtainareductionformulaeforIn=10(lnx)ndxfindI2=10(lnx)2dx
Answered by Olaf last updated on 14/Nov/20
I_n  = ∫_0 ^1 ln^n xdx  I_0  = 1 and for n ≥ 1 :  I_n  = [xln^n x]_0 ^1 −∫_0 ^1 x(n(1/x)ln^(n−1) x)dx  I_n  = −n∫_0 ^1 ln^(n−1) xdx = −nI_(n−1)   ⇒ I_n  = (−1)^n n!I_0  = (−1)^n n!  If n = 2, I_2  = (−1)^2 2! = 2
In=01lnnxdxI0=1andforn1:In=[xlnnx]0101x(n1xlnn1x)dxIn=n01lnn1xdx=nIn1In=(1)nn!I0=(1)nn!Ifn=2,I2=(1)22!=2
Commented by physicstutes last updated on 14/Nov/20
This is incredible. Thank you sir Olaf.
Thisisincredible.ThankyousirOlaf.
Answered by Dwaipayan Shikari last updated on 14/Nov/20
∫_∞ ^0 t^n xdt      logx=t⇒(1/x)=(dt/dx)  =∫_∞ ^0 t^n e^t dt  =∫_0 ^∞ (−1)^n u^n e^(−t) dt    t=−u  =(−1)^n Γ(n+1)=(−1)^n n!   as per question  It is (−1)^2 2!=2
0tnxdtlogx=t1x=dtdx=0tnetdt=0(1)nunetdtt=u=(1)nΓ(n+1)=(1)nn!asperquestionItis(1)22!=2
Commented by physicstutes last updated on 14/Nov/20
thats right!
thatsright!

Leave a Reply

Your email address will not be published. Required fields are marked *