obtain-the-modulus-and-arguement-of-1-i-4-2-2-3i-3- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 99623 by hardylanes last updated on 22/Jun/20 obtainthemodulusandarguementof(1−i)4(2+23i)3 Commented by Dwaipayan Shikari last updated on 22/Jun/20 =(1−i)2.243(12+32i)3=(−2i)264eπi3.3=−464eπi=−4−64=116+0.i=zmod(z)is116arg(z)is0[Asα=tan−1(0116)=0]{Andeπi=−1} Answered by Rio Michael last updated on 22/Jun/20 letz=(1−i)4(2+23i)3=(2ei7π4)4(4eiπ3)3=4e7πi43eπi⇒∣z∣=443=142=116argz=7π−π=6π=3(2π)aco−terminalangle=0⇒argz=0 Commented by mathmax by abdo last updated on 23/Jun/20 z=(1−i)4(2+23i)3wehave1−i=2e−iπ4⇒(1−i)4=4e−iπ2+23i=2(1+3i)=4(12+i32)=4eiπ3⇒(2+23i)3=43e4iπ3⇒z=116e−iπ−4iπ3=116e−i(π+4π3)=116e−i(7π3)=116e−i(2π+π3)=116e−iπ3⇒∣z∣=116andargz≡−π3[2π] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-2pi-7-then-what-is-the-value-of-sin-sin2-sin4-Next Next post: f-x-2x-2-5x-Montrer-que-f-est-lipschitzienne-sur-R- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.