Menu Close

obtain-the-modulus-and-arguement-of-1-i-4-2-2-3i-3-




Question Number 99623 by hardylanes last updated on 22/Jun/20
obtain the modulus and arguement of  (((1−i)^4 )/((2+2(√(3i)^3 ))))
obtainthemodulusandarguementof(1i)4(2+23i)3
Commented by Dwaipayan Shikari last updated on 22/Jun/20
=(((1−i)^(2.2) )/(4^3 ((1/2)+((√3)/2)i)^3 ))=(((−2i)^2 )/(64e^(((πi)/3).3) ))=((−4)/(64 e^(πi) ))=((−4)/(−64))=(1/(16))+0.i=z  mod (z) is (1/(16))  arg(z) is 0   [As α=tan^(−1) ((0/(1/(16))))=0  ]{And  e^(πi) =−1}
=(1i)2.243(12+32i)3=(2i)264eπi3.3=464eπi=464=116+0.i=zmod(z)is116arg(z)is0[Asα=tan1(0116)=0]{Andeπi=1}
Answered by Rio Michael last updated on 22/Jun/20
let z = (((1−i)^4 )/((2 + 2(√3) i)^3 )) = ((((√2) e^(i((7π)/4)) )^4 )/((4e^(i(π/3)) )^3 )) = ((4e^(7πi) )/(4^3 e^(πi) ))  ⇒ ∣z∣ = (4/4^3 ) = (1/4^2 ) =  (1/(16))   arg z = 7π−π = 6π = 3(2π)  aco−terminal angle = 0  ⇒ arg z = 0
letz=(1i)4(2+23i)3=(2ei7π4)4(4eiπ3)3=4e7πi43eπiz=443=142=116argz=7ππ=6π=3(2π)acoterminalangle=0argz=0
Commented by mathmax by abdo last updated on 23/Jun/20
z =(((1−i)^4 )/((2+2(√3)i)^3 ))  we have 1−i =(√2)e^(−((iπ)/4))  ⇒(1−i)^4  =4 e^(−iπ)    2+2(√3)i =2(1+(√3)i) =4((1/2)+((i(√3))/2)) =4e^((iπ)/3)  ⇒(2+2(√3)i)^3  =4^3  e^((4iπ)/3)  ⇒  z =(1/(16)) e^(−iπ−((4iπ)/3))  =(1/(16)) e^(−i(π+((4π)/3)))  =(1/(16)) e^(−i(((7π)/3)))  =(1/(16)) e^(−i(2π +(π/3)))  =(1/(16)) e^(−((iπ)/3))  ⇒  ∣z∣ =(1/(16)) and argz ≡−(π/3)[2π]
z=(1i)4(2+23i)3wehave1i=2eiπ4(1i)4=4eiπ2+23i=2(1+3i)=4(12+i32)=4eiπ3(2+23i)3=43e4iπ3z=116eiπ4iπ3=116ei(π+4π3)=116ei(7π3)=116ei(2π+π3)=116eiπ3z=116andargzπ3[2π]

Leave a Reply

Your email address will not be published. Required fields are marked *