old-and-unanswered-Mr-Mathdave-x-2-ln-1-x-ln-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 114044 by Her_Majesty last updated on 16/Sep/20 oldandunanswered…MrMathdave???∫x2ln(1−x)ln(1+x)dx=? Answered by mathdave last updated on 17/Sep/20 sokutionputx=(2y−1)(watididhereislogical)I=∫01(2y−1)2ln(2−2y)ln(2y)dyI=ln2(2)∫01(2y−1)2dy+ln2∫01(2y−1)2lnydy+ln2∫01(2y−1)2ln(1−y)dy+∫01(2y−1)2lnyln(1−y)dyletI1=ln2(2)∫01(2y−1)2dy=ln2(2)3…..(1)I2=ln2∫01(2y−1)2lnydy+ln2∫01(2y−1)2ln(1−y)dyI2=2ln2∫01(2y−1)2lnydy∂∂a∣a=1I2=2ln2∫01(2y−1)ya−1dy∂∂a∣a=1I2=2ln2∙4(2+a),I2=−8ln29…….(2)I3=∫01(2y−1)2ln(1−y)lnydybut(2y−1)2=4y2−4y+1I3=4∫01y2ln(1−y)lnydy−4∫01yln(1−y)lnydy+∫01ln(1−y)lnydyI3=∂∂a∣a=1−4∑∞n=11n∫01yn.y2.ya−1dy+∂∂a∣a=1∑∞n=11n∫01yn.y.ya−1dy+∂∂a∣a=1∑∞n=11n∫01yn.ya−1dyI3=∂∂a∣a=1[−4∑∞n=11n(n+2+a)+4∑∞n=11n(n+1+a)−∑∞n=11n(n+a)]I3=4∑∞n=11n(n+3)2−4∑∞n=11n(n+2)2+∑∞n=11n(n+1)2I3=4[∑∞n=1(19n−19(n+3)−13(n+3)2)]−4[∑∞n=1(14n−14(n+2)−12(n+2)2)]+∑∞n=1(1n−1(n+1)2−1(n+1))I3=7127−4π218+π23−4+2−π26=(1727−π218)…..(3)butI=I1+I2+I3I=ln2(2)3−8ln29−π218+1727∵∫01x2ln(1−x)ln(1+x)dx=ln2(2)3−8ln29−π218+1727mathdave(itrytocompresseddworkandskipsomesteps)anycomplainabouttheworkingisallow Commented by mnjuly1970 last updated on 17/Sep/20 niceverynicemrdave Commented by Tawa11 last updated on 06/Sep/21 greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: For-every-natural-numbers-n-Find-the-value-of-0-j-i-n-1-j-n-i-j-Next Next post: Question-48517 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.