Menu Close

old-problem-question-118120-tan-tan-x-tan-3x-tan-2x-let-t-tan-x-1-tan-t-t-5-2t-3-t-3t-4-4t-2-1-for-t-0-we-get-approximating-t-0-0-t-1-1-28941477-t-2-4-17629616-t-3-7-49316173-




Question Number 118371 by MJS_new last updated on 17/Oct/20
old problem question 118120  tan tan x =tan 3x −tan 2x  let t=tan x  (1)     tan t =((t^5 +2t^3 +t)/(3t^4 −4t^2 +1))  for t≥0 we get (approximating)  t_0 =0  t_1 ≈1.28941477  t_2 ≈4.17629616  t_3 ≈7.49316173  t_4 ≈10.7303610  t_5 ≈13.9285293  ...  x=nπ+arctan t  let n=0 to stay in the first period  0≤t<+∞ ⇒ 0≤arctan t <(π/2)  ⇒ (1) has infinite solutions for 0≤x<(π/2)  graphically this is easy to see, plot these:  f_1 (t)=tan t  f_2 (t)=((t(t^4 +2t^2 +1))/(3t^4 −4t^2 +1))=(t/3)+((2t(5t^2 +1))/(3(3t^4 −4t^2 +1)))  ⇒ g(t)=(1/3)t is asymptote of f_1 (t)  and obviously tan t =at with a∈R has  infinite solutions
$$\mathrm{old}\:\mathrm{problem}\:{question}\:\mathrm{118120} \\ $$$$\mathrm{tan}\:\mathrm{tan}\:{x}\:=\mathrm{tan}\:\mathrm{3}{x}\:−\mathrm{tan}\:\mathrm{2}{x} \\ $$$$\mathrm{let}\:{t}=\mathrm{tan}\:{x} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\mathrm{tan}\:{t}\:=\frac{{t}^{\mathrm{5}} +\mathrm{2}{t}^{\mathrm{3}} +{t}}{\mathrm{3}{t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\mathrm{for}\:{t}\geqslant\mathrm{0}\:\mathrm{we}\:\mathrm{get}\:\left(\mathrm{approximating}\right) \\ $$$${t}_{\mathrm{0}} =\mathrm{0} \\ $$$${t}_{\mathrm{1}} \approx\mathrm{1}.\mathrm{28941477} \\ $$$${t}_{\mathrm{2}} \approx\mathrm{4}.\mathrm{17629616} \\ $$$${t}_{\mathrm{3}} \approx\mathrm{7}.\mathrm{49316173} \\ $$$${t}_{\mathrm{4}} \approx\mathrm{10}.\mathrm{7303610} \\ $$$${t}_{\mathrm{5}} \approx\mathrm{13}.\mathrm{9285293} \\ $$$$… \\ $$$${x}={n}\pi+\mathrm{arctan}\:{t} \\ $$$$\mathrm{let}\:{n}=\mathrm{0}\:\mathrm{to}\:\mathrm{stay}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{period} \\ $$$$\mathrm{0}\leqslant{t}<+\infty\:\Rightarrow\:\mathrm{0}\leqslant\mathrm{arctan}\:{t}\:<\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\left(\mathrm{1}\right)\:\mathrm{has}\:\mathrm{infinite}\:\mathrm{solutions}\:\mathrm{for}\:\mathrm{0}\leqslant{x}<\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{graphically}\:\mathrm{this}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see},\:\mathrm{plot}\:\mathrm{these}: \\ $$$${f}_{\mathrm{1}} \left({t}\right)=\mathrm{tan}\:{t} \\ $$$${f}_{\mathrm{2}} \left({t}\right)=\frac{{t}\left({t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{3}{t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}}=\frac{{t}}{\mathrm{3}}+\frac{\mathrm{2}{t}\left(\mathrm{5}{t}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{3}\left(\mathrm{3}{t}^{\mathrm{4}} −\mathrm{4}{t}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\Rightarrow\:{g}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{3}}{t}\:\mathrm{is}\:\mathrm{asymptote}\:\mathrm{of}\:{f}_{\mathrm{1}} \left({t}\right) \\ $$$$\mathrm{and}\:\mathrm{obviously}\:\mathrm{tan}\:{t}\:={at}\:\mathrm{with}\:{a}\in\mathbb{R}\:\mathrm{has} \\ $$$$\mathrm{infinite}\:\mathrm{solutions} \\ $$
Commented by prakash jain last updated on 17/Oct/20
Agree. There were mistakes in  my previous calculation.
$$\mathrm{Agree}.\:\mathrm{There}\:\mathrm{were}\:\mathrm{mistakes}\:\mathrm{in} \\ $$$$\mathrm{my}\:\mathrm{previous}\:\mathrm{calculation}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *