Menu Close

On-the-interval-of-0-2pi-solve-sin-6x-sin-2x-0-




Question Number 107977 by anonymous last updated on 13/Aug/20
On the interval of [0,2π] solve  sin 6x +sin 2x=0
Ontheintervalof[0,2π]solvesin6x+sin2x=0
Answered by bemath last updated on 13/Aug/20
  ((Be((Math)/♥))/(joss))  ⇒ 2sin 4x cos 2x = 0    { ((sin 4x = 0 ⇒x = (π/2)k →x=0,(π/2),((3π)/2),2π)),((cos 2x = 0⇒x=±(π/4)+m.π )) :}
BeMathjoss2sin4xcos2x=0{sin4x=0x=π2kx=0,π2,3π2,2πcos2x=0x=±π4+m.π
Commented by anonymous last updated on 13/Aug/20
GODBLESS YOU
GODBLESSYOU
Answered by mr W last updated on 13/Aug/20
sin 6x=−sin 2x  ⇒6x=(2k+1)π+2x ⇒x=(((2k+1)π)/4)  ⇒6x=2kπ−2x ⇒x=((kπ)/4)  within [0,2π]:  x=0,(π/4),(π/2),((3π)/4),π,((5π)/4),((3π)/2),((7π)/4),2π
sin6x=sin2x6x=(2k+1)π+2xx=(2k+1)π46x=2kπ2xx=kπ4within[0,2π]:x=0,π4,π2,3π4,π,5π4,3π2,7π4,2π
Commented by anonymous last updated on 13/Aug/20
GOD BLESS YOU
GODBLESSYOU

Leave a Reply

Your email address will not be published. Required fields are marked *