one-of-the-conditions-of-the-inflection-point-is-inflection-tangent-what-is-inflection-tangent- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 91460 by M±th+et+s last updated on 30/Apr/20 oneoftheconditionsoftheinflectionpointisinflectiontangent.whatisinflectiontangent? Answered by MJS last updated on 01/May/20 it′sthetangentintheinflectionpointwhichalsointersectsthecurveintheinflectionpointIoncelearnedthesethingswiththeseelementarfunctionsy=ax+b,a≠0y′=a⇒constantslope,nocurvaturey=ax2+bx+c,a≠0y′=2ax+bzeroatx=−b2a⇒extremepointy″=2a⇒constantcurvaturedependingonthesignofaa<0⇒maximuma>0⇒minimum}atx=−b2ay=ax3+bx2+cx+d,a≠0y′=3ax2+2bx+czerosatx=−b±b2−3ac3a(1)2distinctzeros∈R⇒extremepoints(2)1doublezero∈R⇒noextremepointsbutaninflectionpointwithhorizontaltangent(3)2zeros∉R⇒noextremepointsinbothcasesy″=6ax+2b⇒curvaturechangeszeroatx=−b3a⇒inflectionpointy‴=6a{a<0⇒curvaturechanges−to+a>0⇒curvaturechanges+to−theinflectiontangentalsointersectsthecurveatx=−b3ay=ax4+bx3+cx2+dx+e,a≠0y′=4ax3+3bx2+2cx+dnowit′sgettingcomplicated(1)3distinctzeros∈R(2)2doubleand1solitairezeros∈R(3)onetriplezero∈R(4)1zero∈Rand2zeros∉Rwecanget3,2orextremes,flatpointsandasaddlepointsaddlepoint:y=x2,y′=2x,y″=2>0minimumaty=0y=x3,y′=3x2,y″=6x,y‴=6>0noextremesinflectionpointatx=0withhorizontaltangent,curvaturechangesfrom−to+y=x4,y′=4x3,y″=12x2,y‴=24xminimumatx=0buty″=0!?⇒?⇒?inflectionpoint?butthecurvaturedoesn′tchange(y‴=0)⇒thisiscalledasaddlepoint Commented by M±th+et+s last updated on 01/May/20 verycoolexplanation.thankyouverymuch Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-n-sin-sin-sin-sin-x-n-n-0-lt-x-lt-pi-Next Next post: Expand-1-x-4-Hence-find-S-if-S-1-x-3-4-4-1-x-3-3-6-1-x-3-2-4-1-x-3-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.