Menu Close

ordinary-differential-equation-y-xy-y-0-general-solution-m-n-1970-




Question Number 118364 by mnjuly1970 last updated on 17/Oct/20
             ...ordinary differential equation...             y′′ −xy′+y=0      general solution ::=??                          .m.n.1970.
ordinarydifferentialequationyxy+y=0generalsolution::=??.m.n.1970.
Answered by mindispower last updated on 17/Oct/20
we can see easly that y=x is solution  let y=xz  ⇒y′=xz′+z  y′′=xz′′+2z′  xz′′+2z′−x(xz′+z)+xz=0  ⇒xz′′+(2−x^2 )z′=0  ⇒∫((d(z′))/(z′))=∫((x^2 −2)/x)dx=((x^2 /2)−2ln(x))  ⇒z=(k/x^2 )e^(x^2 /2)   by part z=(−(k/x)e^(x^2 /2) )+∫ke^(x^2 /2) dx  x=iy(√2) in 2nd  =z(x)=−(k/2)e^(x^2 /2) +k∫i(√2)e^(−y^2 ) dy  =−(k/2)e^(x^2 /2) +ik((√π)/2) erf((x/(i(√2))))  y(x)=x(−(k/2)e^(x^2 /2) +ik((√π)/2)erf((x/(i(√2))))+c)
wecanseeeaslythaty=xissolutionlety=xzy=xz+zy=xz+2zxz+2zx(xz+z)+xz=0xz+(2x2)z=0d(z)z=x22xdx=(x222ln(x))z=kx2ex22bypartz=(kxex22)+kex22dxx=iy2in2nd=z(x)=k2ex22+ki2ey2dy=k2ex22+ikπ2erf(xi2)y(x)=x(k2ex22+ikπ2erf(xi2)+c)
Commented by mnjuly1970 last updated on 17/Oct/20
thank you so much  mr...
thankyousomuchmr
Commented by mindispower last updated on 19/Oct/20
withe pleasur sir
withepleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *