Menu Close

p-1-1-2-1-3-1-4-1-2003-1-2004-q-1-1003-1-1004-1-2004-p-2-q-2-




Question Number 91277 by john santu last updated on 29/Apr/20
p=1−(1/2)+(1/3)−(1/4)+...+(1/(2003))−(1/(2004))  q=(1/(1003))+(1/(1004))+...+(1/(2004))  p^2 +q^2  =
$${p}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{2003}}−\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${q}=\frac{\mathrm{1}}{\mathrm{1003}}+\frac{\mathrm{1}}{\mathrm{1004}}+…+\frac{\mathrm{1}}{\mathrm{2004}} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} \:=\: \\ $$
Answered by naka3546 last updated on 30/Apr/20
Commented by jagoll last updated on 30/Apr/20
i think it wrong answer
$${i}\:{think}\:{it}\:{wrong}\:{answer} \\ $$
Commented by naka3546 last updated on 30/Apr/20
Show  your  workings, please
$${Show}\:\:{your}\:\:{workings},\:{please}\: \\ $$
Answered by naka3546 last updated on 30/Apr/20

Leave a Reply

Your email address will not be published. Required fields are marked *