Menu Close

p-2m-1-is-a-prime-number-prove-that-1-p-1-1-p-2-m-2-1-m-1-p-




Question Number 29036 by abdo imad last updated on 03/Feb/18
p=2m+1 is a prime number prove that  1) (p−1)!≡ −1[p]  2) (m!)^2 ≡ (−1)^(m+1)  [p]
$${p}=\mathrm{2}{m}+\mathrm{1}\:{is}\:{a}\:{prime}\:{number}\:{prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\left({p}−\mathrm{1}\right)!\equiv\:−\mathrm{1}\left[{p}\right] \\ $$$$\left.\mathrm{2}\right)\:\left({m}!\right)^{\mathrm{2}} \equiv\:\left(−\mathrm{1}\right)^{{m}+\mathrm{1}} \:\left[{p}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *