Menu Close

p-3-q-3-c-pq-1-3-0-lt-c-lt-2-3-3-Find-p-q-




Question Number 187388 by ajfour last updated on 16/Feb/23
p^3 +q^3 =c   ,  pq=(1/3)   ∀   0<c<(2/(3(√3)))  Find p+q.
p3+q3=c,pq=130<c<233Findp+q.
Answered by anurup last updated on 17/Feb/23
  (p+q)^3 −3pq(p+q)=c  x^3 −x−c=0,x=p+q  x=u+v  ⇒x^3 =u^3 +v^3 +3uvx  ⇒x^3 −3uvx−(u^3 +v^3 )=0  ∴uv=(1/3) and u^3 +v^3 =c  (u^3 −v^3 )^2 =(u^3 +v^3 )^2 −4u^3 v^3   ⇒(u^3 −v^3 )=±(√(c^2 −(4/(27))))  ∴u^3 =(1/2)(c±(√(c^2 −(4/(27)))) ),v^3 =(1/2)(c∓(√(c^2 −(4/(27)))))  ∵u^3 v^3 =(1/(27)), u^3 =(1/2)(c+(√(c^2 −(4/(27)))) ),v^3 =(1/2)(c−(√(c^2 −(4/(27)))) )  ∵0<c<(2/(3(√3))), c^2 <(4/(27))  ∴u^3 =(1/2)(c+i(√((4/(27))−c^2  )) ),v^3 =(1/2)(c−i(√((4/(27))−c^2  )) )  u=(1/( (√3)))(cos θ+isin θ)^(1/3) , v=(1/( (√)3))(cos θ−isin θ)^(1/3) where tan θ=((√((4/(27))−c^2 ))/c)  u=(1/( (√)3)){cos (((θ+2kπ))/3)+isin (((θ+2kπ))/3)},v=(1/( (√3))){cos (((θ+2kπ))/3)−isin (((θ+2kπ))/3)},k=0,1,2  For each value of k we will get an ordered pair(u,v)  each of which corresponds to a value of x,   θ=tan^(−1) ((√((4/(27))−c^2 ))/c)
(p+q)33pq(p+q)=cx3xc=0,x=p+qx=u+vx3=u3+v3+3uvxx33uvx(u3+v3)=0uv=13andu3+v3=c(u3v3)2=(u3+v3)24u3v3(u3v3)=±c2427u3=12(c±c2427),v3=12(cc2427)u3v3=127,u3=12(c+c2427),v3=12(cc2427)0<c<233,c2<427u3=12(c+i427c2),v3=12(ci427c2)u=13(cosθ+isinθ)13,v=13(cosθisinθ)13wheretanθ=427c2cu=13{cos(θ+2kπ)3+isin(θ+2kπ)3},v=13{cos(θ+2kπ)3isin(θ+2kπ)3},k=0,1,2Foreachvalueofkwewillgetanorderedpair(u,v)eachofwhichcorrespondstoavalueofx,θ=tan1427c2c
Commented by anurup last updated on 17/Feb/23
waiting for your feedback
waitingforyourfeedback
Commented by ajfour last updated on 17/Feb/23
thanks, see i have taken another  way...
thanks,seeihavetakenanotherway
Answered by ajfour last updated on 17/Feb/23
Basically  x^3 =x+c  If x=p+q  p^3 +q^3 +3pq(p+q)=p+q+c  If  we take   p^3 +q^3 =c  ⇒    pq=(1/3)   as  p+q=x≠0  let another way  x=((√3)/2)(((cos φ)/(cos θ)))  ⇒  3(√3)cos^3 φ=((√3)cos φ)(2cos θ)^2                                     +8ccos^3 θ  from  4cos^3 φ−3cos φ=cos 3φ  we compare coefficients     ((3(√3))/(4(√3)cos^2 θ))=(4/3)  ⇒  cos^2 θ=(9/(16))  first simply let  cos θ=(3/4)  ⇒  ((3(√3))/4)cos 3φ=8ccos^3 θ  cos 3φ=(4/(3(√3)))(8c)((3/4))^3 =((3(√3)c)/2)  ⇒  3φ=2kπ±cos^(−1) (((3(√3)c)/2))  ⇒  x=p+q=((√3)/2)×(4/3)cos φ  x=(2/( (√3)))cos [((2kπ)/3)±(1/3)cos^(−1) (((3(√3)c)/2))]  k=0,1,2  say one p+q=x is then for k=0     x=p+q=(2/( (√3)))cos ((1/3)cos^(−1) (((3(√3)c)/2)))
Basicallyx3=x+cIfx=p+qp3+q3+3pq(p+q)=p+q+cIfwetakep3+q3=cpq=13asp+q=x0letanotherwayx=32(cosϕcosθ)33cos3ϕ=(3cosϕ)(2cosθ)2+8ccos3θfrom4cos3ϕ3cosϕ=cos3ϕwecomparecoefficients3343cos2θ=43cos2θ=916firstsimplyletcosθ=34334cos3ϕ=8ccos3θcos3ϕ=433(8c)(34)3=33c23ϕ=2kπ±cos1(33c2)x=p+q=32×43cosϕx=23cos[2kπ3±13cos1(33c2)]k=0,1,2sayonep+q=xisthenfork=0x=p+q=23cos(13cos1(33c2))
Commented by anurup last updated on 17/Feb/23
wow! Innovative, but I just want to know what  makes you think to assume x=((√3)/2)(((cos φ)/(cos θ)))
wow!Innovative,butIjustwanttoknowwhatmakesyouthinktoassumex=32(cosϕcosθ)
Commented by ajfour last updated on 17/Feb/23
i have tried 3500 substitutions!
ihavetried3500substitutions!

Leave a Reply

Your email address will not be published. Required fields are marked *