Question Number 187388 by ajfour last updated on 16/Feb/23
$${p}^{\mathrm{3}} +{q}^{\mathrm{3}} ={c}\:\:\:,\:\:{pq}=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:\forall\:\:\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${Find}\:{p}+{q}. \\ $$
Answered by anurup last updated on 17/Feb/23
$$ \\ $$$$\left({p}+{q}\right)^{\mathrm{3}} −\mathrm{3}{pq}\left({p}+{q}\right)={c} \\ $$$${x}^{\mathrm{3}} −{x}−{c}=\mathrm{0},{x}={p}+{q} \\ $$$${x}={u}+{v} \\ $$$$\Rightarrow{x}^{\mathrm{3}} ={u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}{uvx} \\ $$$$\Rightarrow{x}^{\mathrm{3}} −\mathrm{3}{uvx}−\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\therefore{uv}=\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{and}\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} ={c} \\ $$$$\left({u}^{\mathrm{3}} −{v}^{\mathrm{3}} \right)^{\mathrm{2}} =\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{4}{u}^{\mathrm{3}} {v}^{\mathrm{3}} \\ $$$$\Rightarrow\left({u}^{\mathrm{3}} −{v}^{\mathrm{3}} \right)=\pm\sqrt{{c}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{27}}} \\ $$$$\therefore{u}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({c}\pm\sqrt{{c}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{27}}}\:\right),{v}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({c}\mp\sqrt{{c}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{27}}}\right) \\ $$$$\because{u}^{\mathrm{3}} {v}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{27}},\:{u}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({c}+\sqrt{{c}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{27}}}\:\right),{v}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({c}−\sqrt{{c}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{27}}}\:\right) \\ $$$$\because\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}},\:{c}^{\mathrm{2}} <\frac{\mathrm{4}}{\mathrm{27}} \\ $$$$\therefore{u}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({c}+{i}\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−{c}^{\mathrm{2}} \:}\:\right),{v}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}\left({c}−{i}\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−{c}^{\mathrm{2}} \:}\:\right) \\ $$$${u}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\:{v}=\frac{\mathrm{1}}{\:\sqrt{}\mathrm{3}}\left(\mathrm{cos}\:\theta−{i}\mathrm{sin}\:\theta\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{where}\:\mathrm{tan}\:\theta=\frac{\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−{c}^{\mathrm{2}} }}{{c}} \\ $$$${u}=\frac{\mathrm{1}}{\:\sqrt{}\mathrm{3}}\left\{\mathrm{cos}\:\frac{\left(\theta+\mathrm{2}{k}\pi\right)}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\left(\theta+\mathrm{2}{k}\pi\right)}{\mathrm{3}}\right\},{v}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\left\{\mathrm{cos}\:\frac{\left(\theta+\mathrm{2}{k}\pi\right)}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\left(\theta+\mathrm{2}{k}\pi\right)}{\mathrm{3}}\right\},{k}=\mathrm{0},\mathrm{1},\mathrm{2} \\ $$$$\mathrm{For}\:\mathrm{each}\:\mathrm{value}\:\mathrm{of}\:\mathrm{k}\:\mathrm{we}\:\mathrm{will}\:\mathrm{get}\:\mathrm{an}\:\mathrm{ordered}\:\mathrm{pair}\left({u},{v}\right) \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{which}\:\mathrm{corresponds}\:\mathrm{to}\:\mathrm{a}\:\mathrm{value}\:\mathrm{of}\:{x},\: \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\frac{\mathrm{4}}{\mathrm{27}}−{c}^{\mathrm{2}} }}{{c}} \\ $$$$ \\ $$
Commented by anurup last updated on 17/Feb/23
$$\mathrm{waiting}\:\mathrm{for}\:\mathrm{your}\:\mathrm{feedback} \\ $$
Commented by ajfour last updated on 17/Feb/23
$${thanks},\:{see}\:{i}\:{have}\:{taken}\:{another} \\ $$$${way}… \\ $$
Answered by ajfour last updated on 17/Feb/23
$${Basically}\:\:{x}^{\mathrm{3}} ={x}+{c} \\ $$$${If}\:{x}={p}+{q} \\ $$$${p}^{\mathrm{3}} +{q}^{\mathrm{3}} +\mathrm{3}{pq}\left({p}+{q}\right)={p}+{q}+{c} \\ $$$${If}\:\:{we}\:{take}\:\:\:{p}^{\mathrm{3}} +{q}^{\mathrm{3}} ={c}\:\:\Rightarrow\:\: \\ $$$${pq}=\frac{\mathrm{1}}{\mathrm{3}}\:\:\:{as}\:\:{p}+{q}={x}\neq\mathrm{0} \\ $$$${let}\:{another}\:{way}\:\:{x}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{cos}\:\phi}{\mathrm{cos}\:\theta}\right) \\ $$$$\Rightarrow\:\:\mathrm{3}\sqrt{\mathrm{3}}\mathrm{cos}\:^{\mathrm{3}} \phi=\left(\sqrt{\mathrm{3}}\mathrm{cos}\:\phi\right)\left(\mathrm{2cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{8}{c}\mathrm{cos}\:^{\mathrm{3}} \theta \\ $$$${from}\:\:\mathrm{4cos}\:^{\mathrm{3}} \phi−\mathrm{3cos}\:\phi=\mathrm{cos}\:\mathrm{3}\phi \\ $$$${we}\:{compare}\:{coefficients} \\ $$$$\:\:\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}\sqrt{\mathrm{3}}\mathrm{cos}\:^{\mathrm{2}} \theta}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:^{\mathrm{2}} \theta=\frac{\mathrm{9}}{\mathrm{16}} \\ $$$${first}\:{simply}\:{let}\:\:\mathrm{cos}\:\theta=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\mathrm{cos}\:\mathrm{3}\phi=\mathrm{8}{c}\mathrm{cos}\:^{\mathrm{3}} \theta \\ $$$$\mathrm{cos}\:\mathrm{3}\phi=\frac{\mathrm{4}}{\mathrm{3}\sqrt{\mathrm{3}}}\left(\mathrm{8}{c}\right)\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{3}} =\frac{\mathrm{3}\sqrt{\mathrm{3}}{c}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{3}\phi=\mathrm{2}{k}\pi\pm\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}{c}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\:\:{x}={p}+{q}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{3}}\mathrm{cos}\:\phi \\ $$$${x}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\:\left[\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\pm\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}{c}}{\mathrm{2}}\right)\right] \\ $$$${k}=\mathrm{0},\mathrm{1},\mathrm{2} \\ $$$${say}\:{one}\:{p}+{q}={x}\:{is}\:{then}\:{for}\:{k}=\mathrm{0} \\ $$$$\:\:\:{x}={p}+{q}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\mathrm{cos}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{3}\sqrt{\mathrm{3}}{c}}{\mathrm{2}}\right)\right) \\ $$
Commented by anurup last updated on 17/Feb/23
$$\mathrm{wow}!\:\mathrm{Innovative},\:\mathrm{but}\:\mathrm{I}\:\mathrm{just}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{what} \\ $$$$\mathrm{makes}\:\mathrm{you}\:\mathrm{think}\:\mathrm{to}\:\mathrm{assume}\:{x}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\frac{\mathrm{cos}\:\phi}{\mathrm{cos}\:\theta}\right) \\ $$
Commented by ajfour last updated on 17/Feb/23
$${i}\:{have}\:{tried}\:\mathrm{3500}\:{substitutions}! \\ $$