Menu Close

p-3-q-3-r-2-p-3-r-3-q-2-q-3-r-3-p-2-20pqr-




Question Number 176636 by cortano1 last updated on 23/Sep/22
  { ((p^3 +q^3 =r^2 )),((p^3 +r^3 =q^2 )),((q^3 +r^3 =p^2 )) :}   ⇒20pqr =?
{p3+q3=r2p3+r3=q2q3+r3=p220pqr=?
Commented by Frix last updated on 23/Sep/22
easy to see p=q=r=0∨(1/2)  I think for p, q, r ∈C there are solutions  with p≠q∧q=r (or rotations of this)   and p≠q∧q≠r
easytoseep=q=r=012Ithinkforp,q,rCtherearesolutionswithpqq=r(orrotationsofthis)andpqqr
Commented by Frix last updated on 23/Sep/22
one possibility is pqr=(1/2)
onepossibilityispqr=12
Answered by BaliramKumar last updated on 23/Sep/22
p = q = r = (1/2)  20pqr = 20×(1/2)×(1/2)×(1/2) = (5/2)
p=q=r=1220pqr=20×12×12×12=52
Commented by mr W last updated on 23/Sep/22
i think there are other solutions.  example: p=q=r=0 is also ok.
ithinkthereareothersolutions.example:p=q=r=0isalsook.
Answered by Rasheed.Sindhi last updated on 24/Sep/22
  { ((p^3 +q^3 =r^2 ...(i))),((p^3 +r^3 =q^2 ...(ii))),((q^3 +r^3 =p^2 ...(iii))) :} ;    20pqr =?  (ii)⇒p^3 +(p^3 +q^3 )r=q^2   (iii)⇒q^3 +(p^3 +q^3 )r=p^2   r=((q^2 −p^3 )/(p^3 +q^3 ))=((p^2 −q^3 )/(p^3 +q^3 ))=±(√(p^3 +q^3 ))    { ((q^2 −p^3 =p^2 −q^3 .....(A))),((p^2 −q^3 =±(p^3 +q^3 )^(3/2) ....(B))),((q^2 −p^3 =±(p^3 +q^3 )^(3/2) ....(C))) :}  (A):  q^2 −p^3 =p^2 −q^3   p^2 −q^2 +p^3 −q^3 =0  (p−q)(p+q)+(p−q)(p^2 +pq+q^2 )=0  (p−q)(p^2 +pq+q^2 +p+q)=0  p=q ∣ p^2 +pq+q^2 +p+q=0^★   In similar way q=r  or  p=q=r  (i)⇒r^3 +r^3 =r^2 ⇒2r=1⇒r=(1/2)  or  p=q=r=(1/2)  20pqr=20(1/2)(1/2)(1/2)=5/2    p^2 +pq+q^2 +p+q=0       (p+q)^2 +(p+q)−pq=0      p+q=((−1±(√(1+4pq)))/2)      (B):  p^2 −q^3 =±(p^3 +q^3 )^(3/2)   (p^2 −q^3 )^2 =(p^3 +q^3 )^3   p^4 −2p^2 q^3 +q^6 =p^9 +q^9 +3(pq)^3 (p^3 +q^3 )  (C):  q^2 −p^3 =±(p^3 +q^3 )^(3/2)     Continue...
{p3+q3=r2(i)p3+r3=q2(ii)q3+r3=p2(iii);20pqr=?(ii)p3+(p3+q3)r=q2(iii)q3+(p3+q3)r=p2r=q2p3p3+q3=p2q3p3+q3=±p3+q3{q2p3=p2q3..(A)p2q3=±(p3+q3)3/2.(B)q2p3=±(p3+q3)3/2.(C)(A):q2p3=p2q3p2q2+p3q3=0(pq)(p+q)+(pq)(p2+pq+q2)=0(pq)(p2+pq+q2+p+q)=0p=qp2+pq+q2+p+q=0Insimilarwayq=rorp=q=r(i)r3+r3=r22r=1r=12orp=q=r=1220pqr=20(1/2)(1/2)(1/2)=5/2p2+pq+q2+p+q=0(p+q)2+(p+q)pq=0p+q=1±1+4pq2(B):p2q3=±(p3+q3)3/2(p2q3)2=(p3+q3)3p42p2q3+q6=p9+q9+3(pq)3(p3+q3)(C):q2p3=±(p3+q3)3/2Continue
Commented by Frix last updated on 24/Sep/22
it′s easier this way:  q=αp∧r=βp   { (((1+α^3 )p^3 =β^2 p^2 )),(((1+β^3 )p^3 =α^2 p^2 )),(((α^3 +β^3 )p^3 =p^2 )) :}  first obvious solution p=0 ⇒ p=q=r=0   { ((p=(β^2 /(1+α^3 )))),((p=(α^2 /(1+β^3 )))),((p=(1/(α^3 +β^3 )))) :}  second obvious solution α=β=1 ⇒ p=q=r=(1/2)  now we have to solve  (1/(α^3 +β^3 ))=(α^2 /(1+β^3 ))=(β^2 /(1+α^3 ))  which is hard  I think we get 19 pairs (α, β) including (1, 1)   >and of course because we can exchange  α and β 9 of the remaining 18 are unique  if we set β=1 ⇒ α=1 and 2 pairs of complex  solutions which I can only give approximately at  the moment  α=−.975564±.528237  α=.475564±1.18273  the equation is α^4 +α^3 +α^2 +2α+2=0 and  has no useable exact solutions
itseasierthisway:q=αpr=βp{(1+α3)p3=β2p2(1+β3)p3=α2p2(α3+β3)p3=p2firstobvioussolutionp=0p=q=r=0{p=β21+α3p=α21+β3p=1α3+β3secondobvioussolutionα=β=1p=q=r=12nowwehavetosolve1α3+β3=α21+β3=β21+α3whichishardIthinkweget19pairs(α,β)including(1,1)>andofcoursebecausewecanexchangeαandβ9oftheremaining18areuniqueifwesetβ=1α=1and2pairsofcomplexsolutionswhichIcanonlygiveapproximatelyatthemomentα=.975564±.528237α=.475564±1.18273theequationisα4+α3+α2+2α+2=0andhasnouseableexactsolutions
Commented by Rasheed.Sindhi last updated on 24/Sep/22
Yes sir, you′re right!   ThanX a lot!
Yessir,youreright!ThanXalot!
Commented by Frix last updated on 24/Sep/22
I get (α, β)=  (1, β=α)  (.475564±1.18273i,1)  (.384646±.923064i, −.500000∓.333321i) [not sure if −(1/2)]  (.292652±.727828i, β=α)  (−.792652±.429196i, β=α)  (−.975564±.528237i, 1)  (−1.38465±.923064i, β=conj(α))
Iget(α,β)=(1,β=α)(.475564±1.18273i,1)(.384646±.923064i,.500000.333321i)[notsureif12](.292652±.727828i,β=α)(.792652±.429196i,β=α)(.975564±.528237i,1)(1.38465±.923064i,β=conj(α))
Commented by Tawa11 last updated on 25/Sep/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *