Menu Close

p-5-6-p-p-8-11-p-11-13-12ky-x-2-6x-dx-p-4-7-p-p-9-12-p-11-16-x-2-y-3-2-k-dx-solve-for-y-




Question Number 105239 by bemath last updated on 27/Jul/20
Σ_(Σ_(p=5) ^6 p) ^(Σ_(p=8) ^(11) p)  ∫_(11) ^(13) (((12ky)/x^2 ) + 6x) dx = Σ_(Σ_(p=4) ^7 p) ^(Σ_(p=9) ^(12) p)  ∫_(11) ^(16) (x^2 y−(3/2)k)dx  solve for y
$$\underset{\underset{{p}=\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\frac{\mathrm{12}{ky}}{{x}^{\mathrm{2}} }\:+\:\mathrm{6}{x}\right)\:{dx}\:=\:\underset{\underset{{p}=\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}} {\overset{\underset{{p}=\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{16}} {\int}}\left({x}^{\mathrm{2}} {y}−\frac{\mathrm{3}}{\mathrm{2}}{k}\right){dx} \\ $$$${solve}\:{for}\:{y} \\ $$
Answered by john santu last updated on 27/Jul/20
(1)Σ_(p = 5) ^6 p = 11  (2) Σ_(p = 8) ^(11) p = 38   (3) Σ_(p = 4) ^7 p = 22  (4) Σ_(p = 9) ^(12) p = 42  ⇔ Σ_(11) ^(38)  ∫_(11) ^(13) (12kx^(−2) y +6x) dx=  Σ_(11) ^(38)  [(−((12ky)/x)+3x^2 )]_(11) ^(13) =Σ_(11) ^(38) (3(48)+12ky((1/(11))−(1/(13))))  the strange question .
$$\left(\mathrm{1}\right)\underset{{p}\:=\:\mathrm{5}} {\overset{\mathrm{6}} {\sum}}{p}\:=\:\mathrm{11} \\ $$$$\left(\mathrm{2}\right)\:\underset{{p}\:=\:\mathrm{8}} {\overset{\mathrm{11}} {\sum}}{p}\:=\:\mathrm{38}\: \\ $$$$\left(\mathrm{3}\right)\:\underset{{p}\:=\:\mathrm{4}} {\overset{\mathrm{7}} {\sum}}{p}\:=\:\mathrm{22} \\ $$$$\left(\mathrm{4}\right)\:\underset{{p}\:=\:\mathrm{9}} {\overset{\mathrm{12}} {\sum}}{p}\:=\:\mathrm{42} \\ $$$$\Leftrightarrow\:\underset{\mathrm{11}} {\overset{\mathrm{38}} {\sum}}\:\underset{\mathrm{11}} {\overset{\mathrm{13}} {\int}}\left(\mathrm{12}{kx}^{−\mathrm{2}} {y}\:+\mathrm{6}{x}\right)\:{dx}= \\ $$$$\underset{\mathrm{11}} {\overset{\mathrm{38}} {\sum}}\:\left[\left(−\frac{\mathrm{12}{ky}}{{x}}+\mathrm{3}{x}^{\mathrm{2}} \right)\right]_{\mathrm{11}} ^{\mathrm{13}} =\underset{\mathrm{11}} {\overset{\mathrm{38}} {\sum}}\left(\mathrm{3}\left(\mathrm{48}\right)+\mathrm{12}{ky}\left(\frac{\mathrm{1}}{\mathrm{11}}−\frac{\mathrm{1}}{\mathrm{13}}\right)\right) \\ $$$${the}\:{strange}\:{question}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *