Menu Close

P-a-z-z-2n-2z-n-cosa-1-montrer-que-p-a-z-k-0-n-1-z-2-2zcos-a-pi-2kpi-n-1-




Question Number 147302 by puissant last updated on 19/Jul/21
P_a (z)=z^(2n) −2z^n cosa+1  montrer que  p_a (z)=Π_(k=0) ^(n−1) (z^2 −2zcos((a/π)+((2kπ)/n))+1)
Pa(z)=z2n2zncosa+1montrerquepa(z)=n1k=0(z22zcos(aπ+2kπn)+1)
Answered by mathmax by abdo last updated on 20/Jul/21
p_a (z)=z^(2n) −2z^n cosa +1  let z^n  =x ⇒  p_a (z)=x^2 −2(cosa)x+1  Δ^′  =cos^2 a−1=−sin^2 a ⇒x_1 =cosa +isina =e^(ia)  and x_2 =e^(−ia)   ⇒p_a (z)=(z^n −e^(ia) )(z^n −e^(−ia) )  z^n  =e^(ia)   for z=e^(iθ)  ⇒niθ=i(a+2kπ) ⇒θ_k =((a+2kπ)/(2n))    k∈[[0,n−1]]  ⇒z_k =e^(i(((a+2kπ)/n)))   the roots of z^n −e^(ia)  =0 are α_k =e^(−i(((a+2kπ)/n)))  ⇒  p_a (z)=Π_(k=0) ^(n−1) (z−e^(i(((a+2kπ)/n))) )(z−e^(−i(((a+2kπ)/n))) )  =Π_(k=0) ^(n−1) (z−z_k )(z−z_k ^− )=Π_(k=0) ^(n−1) (z^2 −2Re(z_k )z +∣z_k ∣^2 )  =Π_(k=0) ^(n−1) (z^2  −2cos((a/n)+((2kπ)/n))z+1)
pa(z)=z2n2zncosa+1letzn=xpa(z)=x22(cosa)x+1Δ=cos2a1=sin2ax1=cosa+isina=eiaandx2=eiapa(z)=(zneia)(zneia)zn=eiaforz=eiθniθ=i(a+2kπ)θk=a+2kπ2nk[[0,n1]]zk=ei(a+2kπn)therootsofzneia=0areαk=ei(a+2kπn)pa(z)=k=0n1(zei(a+2kπn))(zei(a+2kπn))=k=0n1(zzk)(zzk)=k=0n1(z22Re(zk)z+zk2)=k=0n1(z22cos(an+2kπn)z+1)
Commented by puissant last updated on 20/Jul/21
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *