Menu Close

P-i-2-R-then-how-dP-P-2-dI-I-Similarly-P-V-2-R-then-how-dP-P-2-dV-V-




Question Number 36707 by rahul 19 last updated on 04/Jun/18
P=i^2 R then how (dP/P) = 2 (dI/I) ?  Similarly P= (V^2 /R) then how (dP/P)=2(dV/V)?
$$\mathrm{P}=\mathrm{i}^{\mathrm{2}} \mathrm{R}\:\mathrm{then}\:\mathrm{how}\:\frac{\mathrm{dP}}{\mathrm{P}}\:=\:\mathrm{2}\:\frac{\mathrm{dI}}{\mathrm{I}}\:? \\ $$$$\mathrm{Similarly}\:\mathrm{P}=\:\frac{\mathrm{V}^{\mathrm{2}} }{\mathrm{R}}\:\mathrm{then}\:\mathrm{how}\:\frac{\mathrm{dP}}{\mathrm{P}}=\mathrm{2}\frac{\mathrm{dV}}{\mathrm{V}}? \\ $$
Commented by rahul 19 last updated on 04/Jun/18
On differentiating we get,  dP= 2IdI×R .
$$\mathrm{On}\:\mathrm{differentiating}\:\mathrm{we}\:\mathrm{get}, \\ $$$$\mathrm{dP}=\:\mathrm{2IdI}×\mathrm{R}\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18
P=I^2 R  (dP/dI)=2IR  dP=2IRdI  (dP/P)=((2IRdI)/(I^2 R))  (dP/P)=((2dI)/I)  proved
$${P}={I}^{\mathrm{2}} {R} \\ $$$$\frac{{dP}}{{dI}}=\mathrm{2}{IR} \\ $$$${dP}=\mathrm{2}{IRdI} \\ $$$$\frac{{dP}}{{P}}=\frac{\mathrm{2}{IRdI}}{{I}^{\mathrm{2}} {R}} \\ $$$$\frac{{dP}}{{P}}=\frac{\mathrm{2}{dI}}{{I}}\:\:{proved} \\ $$
Commented by rahul 19 last updated on 04/Jun/18
thanks sir.
$$\mathrm{thanks}\:\mathrm{sir}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Jun/18
P=(V^2 /R)  (dP/dV)=((2V)/R)  dP=((2VdV)/R)  (dP/P)=((2VdV×R)/(R×V^2 ))  (dP/P)=((2dV)/V) proved
$${P}=\frac{{V}^{\mathrm{2}} }{{R}} \\ $$$$\frac{{dP}}{{dV}}=\frac{\mathrm{2}{V}}{{R}} \\ $$$${dP}=\frac{\mathrm{2}{VdV}}{{R}} \\ $$$$\frac{{dP}}{{P}}=\frac{\mathrm{2}{VdV}×{R}}{{R}×{V}^{\mathrm{2}} } \\ $$$$\frac{{dP}}{{P}}=\frac{\mathrm{2}{dV}}{{V}}\:{proved} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *