Menu Close

p-integr-and-p-2-1-prove-that-c-0-1-ln-ln-p-1-ln-lnp-1-p-c-ln-p-c-2-prove-that-ln-ln-p-1-ln-ln-p-lt-1-plnp-3-prove-that-lim-n-k-2-n-1-klnk-




Question Number 30213 by abdo imad last updated on 18/Feb/18
p integr and p≥2  1) prove that ∃c∈ ]0,1[ /  ln(ln(p+1))−ln(lnp) =(1/((p+c)ln(p+c)))  2)prove that ln(ln(p+1))−ln(ln(p))<(1/(plnp))  3) prove that lim_(n→∞)  Σ_(k=2) ^n  (1/(klnk))=+∞ .
$${p}\:{integr}\:{and}\:{p}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:\exists{c}\in\:\right]\mathrm{0},\mathrm{1}\left[\:/\right. \\ $$$${ln}\left({ln}\left({p}+\mathrm{1}\right)\right)−{ln}\left({lnp}\right)\:=\frac{\mathrm{1}}{\left({p}+{c}\right){ln}\left({p}+{c}\right)} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{ln}\left({ln}\left({p}+\mathrm{1}\right)\right)−{ln}\left({ln}\left({p}\right)\right)<\frac{\mathrm{1}}{{plnp}} \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:{lim}_{{n}\rightarrow\infty} \:\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{klnk}}=+\infty\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *