Menu Close

p-is-a-polynom-having-n-roots-simples-with-x-i-1-caculate-k-1-n-1-1-x-i-and-k-1-n-1-1-x-i-2-




Question Number 50385 by Abdo msup. last updated on 16/Dec/18
p is a polynom having n roots simples with x_i ≠+^− 1  caculate Σ_(k=1) ^n   (1/(1−x_i ))  and Σ_(k=1) ^n   (1/(1−x_i ^2 ))
$${p}\:{is}\:{a}\:{polynom}\:{having}\:{n}\:{roots}\:{simples}\:{with}\:{x}_{{i}} \neq\overset{−} {+}\mathrm{1} \\ $$$${caculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} }\:\:{and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} ^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by Abdo msup. last updated on 19/Dec/18
p(x)=λ Π_(i=1) ^n  (x−x_i ) ⇒(1/(p(x))) =(1/(λ Π_(i=1) ^n (x−x_i )))  =Σ_(i=1) ^n   (α_i /(x−x_i ))  with α_i =(1/(p^′ (x_i ))) ⇒  (1/(p(x))) =(1/(p^′ (x_i ))) Σ_(i=1) ^n  (1/(x−x_i )) ⇒Σ_(i=1) ^n  (1/(x−x_i )) =((p^′ (x_i ))/(p(x)))  x =1 ⇒Σ_(i=1) ^n  (1/(1−x_i )) =((p^′ (x_i ))/(p(1)))  p(1) =λ Π_(i=1) ^n (1−x_i ) .
$${p}\left({x}\right)=\lambda\:\prod_{{i}=\mathrm{1}} ^{{n}} \:\left({x}−{x}_{{i}} \right)\:\Rightarrow\frac{\mathrm{1}}{{p}\left({x}\right)}\:=\frac{\mathrm{1}}{\lambda\:\prod_{{i}=\mathrm{1}} ^{{n}} \left({x}−{x}_{{i}} \right)} \\ $$$$=\sum_{{i}=\mathrm{1}} ^{{n}} \:\:\frac{\alpha_{{i}} }{{x}−{x}_{{i}} }\:\:{with}\:\alpha_{{i}} =\frac{\mathrm{1}}{{p}^{'} \left({x}_{{i}} \right)}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{p}\left({x}\right)}\:=\frac{\mathrm{1}}{{p}^{'} \left({x}_{{i}} \right)}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}−{x}_{{i}} }\:\Rightarrow\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}−{x}_{{i}} }\:=\frac{{p}^{'} \left({x}_{{i}} \right)}{{p}\left({x}\right)} \\ $$$${x}\:=\mathrm{1}\:\Rightarrow\sum_{{i}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{i}} }\:=\frac{{p}^{'} \left({x}_{{i}} \right)}{{p}\left(\mathrm{1}\right)} \\ $$$${p}\left(\mathrm{1}\right)\:=\lambda\:\prod_{{i}=\mathrm{1}} ^{{n}} \left(\mathrm{1}−{x}_{{i}} \right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *