Menu Close

p-is-a-polynom-having-n-roots-simples-with-x-i-1-caculate-k-1-n-1-1-x-i-and-k-1-n-1-1-x-i-2-




Question Number 50385 by Abdo msup. last updated on 16/Dec/18
p is a polynom having n roots simples with x_i ≠+^− 1  caculate Σ_(k=1) ^n   (1/(1−x_i ))  and Σ_(k=1) ^n   (1/(1−x_i ^2 ))
pisapolynomhavingnrootssimpleswithxi+1caculatek=1n11xiandk=1n11xi2
Commented by Abdo msup. last updated on 19/Dec/18
p(x)=λ Π_(i=1) ^n  (x−x_i ) ⇒(1/(p(x))) =(1/(λ Π_(i=1) ^n (x−x_i )))  =Σ_(i=1) ^n   (α_i /(x−x_i ))  with α_i =(1/(p^′ (x_i ))) ⇒  (1/(p(x))) =(1/(p^′ (x_i ))) Σ_(i=1) ^n  (1/(x−x_i )) ⇒Σ_(i=1) ^n  (1/(x−x_i )) =((p^′ (x_i ))/(p(x)))  x =1 ⇒Σ_(i=1) ^n  (1/(1−x_i )) =((p^′ (x_i ))/(p(1)))  p(1) =λ Π_(i=1) ^n (1−x_i ) .
p(x)=λi=1n(xxi)1p(x)=1λi=1n(xxi)=i=1nαixxiwithαi=1p(xi)1p(x)=1p(xi)i=1n1xxii=1n1xxi=p(xi)p(x)x=1i=1n11xi=p(xi)p(1)p(1)=λi=1n(1xi).

Leave a Reply

Your email address will not be published. Required fields are marked *