Menu Close

p-is-a-polynome-having-nroots-simples-x-i-1-x-i-n-with-x-i-2-1-calculste-k-1-n-1-1-x-k-




Question Number 36911 by prof Abdo imad last updated on 07/Jun/18
p is a polynome having nroots simples  x_i  (1≤x_i ≤n ) with x_i ^2  ≠1  calculste  Σ_(k=1) ^n   (1/(1−x_k )) .
$${p}\:{is}\:{a}\:{polynome}\:{having}\:{nroots}\:{simples} \\ $$$${x}_{{i}} \:\left(\mathrm{1}\leqslant{x}_{{i}} \leqslant{n}\:\right)\:{with}\:{x}_{{i}} ^{\mathrm{2}} \:\neq\mathrm{1}\:\:{calculste} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{k}} }\:. \\ $$
Commented by math khazana by abdo last updated on 09/Jun/18
we have  p(x)= λ Π_(i=1) ^n  (x−x_i ) and   p^′ (x) = λ Σ_(i=1) ^n  Π_(k=1 and k≠i) ^n (x−x_k ) ⇒  ((p^′ (x))/(p(x))) = Σ_(k=1) ^n   (1/(x−x_k )) ⇒Σ_(k=1) ^n  (1/(1−x_k )) = ((p^′ (1))/(p(1)))  .
$${we}\:{have}\:\:{p}\left({x}\right)=\:\lambda\:\prod_{{i}=\mathrm{1}} ^{{n}} \:\left({x}−{x}_{{i}} \right)\:{and}\: \\ $$$${p}^{'} \left({x}\right)\:=\:\lambda\:\sum_{{i}=\mathrm{1}} ^{{n}} \:\prod_{{k}=\mathrm{1}\:{and}\:{k}\neq{i}} ^{{n}} \left({x}−{x}_{{k}} \right)\:\Rightarrow \\ $$$$\frac{{p}^{'} \left({x}\right)}{{p}\left({x}\right)}\:=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{x}−{x}_{{k}} }\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{1}−{x}_{{k}} }\:=\:\frac{{p}^{'} \left(\mathrm{1}\right)}{{p}\left(\mathrm{1}\right)}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *