Menu Close

p-is-a-polynomial-having-n-simples-roots-x-i-1-i-n-prove-that-k-1-n-1-p-x-k-0-




Question Number 32331 by abdo imad last updated on 23/Mar/18
p is a polynomial having n simples roots (x_i )_(1≤i≤n)   prove that  Σ_(k=1) ^n   (1/(p^′ (x_k ))) =0
$${p}\:{is}\:{a}\:{polynomial}\:{having}\:{n}\:{simples}\:{roots}\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{i}\leqslant{n}} \\ $$$${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{p}^{'} \left({x}_{{k}} \right)}\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *