Menu Close

p-is-a-polynomial-having-the-roots-x-1-x-2-x-n-with-x-i-x-j-fori-j-give-the-decomposition-of-the-fravtion-F-x-p-x-p-x-




Question Number 26582 by abdo imad last updated on 27/Dec/17
p is a polynomial having the roots x_1 ,x_2 ,...x_n   with x_i ≠ x_j  fori≠j give the decomposition  of the fravtion F(x)= ((p^′ (x))/(p(x)))
$${p}\:{is}\:{a}\:{polynomial}\:{having}\:{the}\:{roots}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,…{x}_{{n}} \\ $$$${with}\:{x}_{{i}} \neq\:{x}_{{j}} \:{fori}\neq{j}\:{give}\:{the}\:{decomposition} \\ $$$${of}\:{the}\:{fravtion}\:{F}\left({x}\right)=\:\frac{{p}^{'} \left({x}\right)}{{p}\left({x}\right)} \\ $$
Commented by abdo imad last updated on 28/Dec/17
the roots of  p(x) are simple so p(x)=α Π_(k=1) ^(k=n) (x−x_k  )  ⇒ p^, (x)=  α Σ_(k=1) ^(k=n)  Π_(p=1_(p≠k) ) ^(p=n)  (x−x_p  ) and  ((p^, (x))/(p(x))) =  Σ_(k=1) ^(k=n)    (1/(x−x_k )) .
$${the}\:{roots}\:{of}\:\:{p}\left({x}\right)\:{are}\:{simple}\:{so}\:{p}\left({x}\right)=\alpha\:\prod_{{k}=\mathrm{1}} ^{{k}={n}} \left({x}−{x}_{{k}} \:\right) \\ $$$$\Rightarrow\:{p}^{,} \left({x}\right)=\:\:\alpha\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\prod_{{p}=\mathrm{1}_{{p}\neq{k}} } ^{{p}={n}} \:\left({x}−{x}_{{p}} \:\right)\:{and} \\ $$$$\frac{{p}^{,} \left({x}\right)}{{p}\left({x}\right)}\:=\:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\:\frac{\mathrm{1}}{{x}−{x}_{{k}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *