Menu Close

P-is-a-polynomial-havng-n-roots-x-i-1-i-n-with-x-i-x-j-for-i-j-find-the-values-of-k1-k-n-1-x-x-k-and-k-1-n-1-x-x-k-2-




Question Number 27000 by abdo imad last updated on 01/Jan/18
P is a polynomial havng n roots (x_i )_(1≤i≤n)   with x_i ≠ x_j  for i≠ j  find the values of Σ_(k1) ^(k=n) (1/(x−x_k ))  and  Σ_(k=1) ^n (1/((x−x_k )^2 )) .
Pisapolynomialhavngnroots(xi)1inwithxixjforijfindthevaluesofk1k=n1xxkandk=1n1(xxk)2.
Commented by abdo imad last updated on 01/Jan/18
P(x)=α Π_(k=1) ^(k=n)  (x−x_k  )⇒ ((P^ (x))/(P(x)))= Σ_(k=1) ^(k=n)  (1/(x−x_k )) and after  derivation  ((P^′^′   (x)P(x)−(P^  )^2 )/((P(x))^2 ))= −Σ_(k=1) ^n (1/((x−x_k )^2 ))  ⇒ Σ_(k=1) ^(k=n) (1/((x−x_k )^2 )) =  ((((dP/dx))^2 − P(x)(d^2 P/dx^2 ))/((P(x))^2 )).
P(x)=αk=1k=n(xxk)P(x)P(x)=k=1k=n1xxkandafterderivationP(x)P(x)(P)2(P(x))2=k=1n1(xxk)2k=1k=n1(xxk)2=(dPdx)2P(x)d2Pdx2(P(x))2.

Leave a Reply

Your email address will not be published. Required fields are marked *