Menu Close

P-n-e-1-1-1-2-1-3-1-4-1-n-1-1-n-e-1-1-2-1-3-1-4-1-n-1-1-n-e-k-1-n-1-k-1-k-P-l




Question Number 175770 by mnjuly1970 last updated on 06/Sep/22
     P_n  = e^( ((1/1) −(1/2)) +((1/3) −(1/4)) +...+((1/(n−1)) −(1/n)))           = e^( (1−(1/2) +(1/3) −(1/4)  +...+(1/(n−1)) −(1/n)))           = e^( Σ_(k=1) ^n (( (−1 )^( k+1) )/k))            ∴  P = lim_( n→∞) (e^( Σ_(k=1) ^n (((−1)^( k+1) )/k)) )                 = e^( lim_( n→∞) ( Σ_(k=1) ^n (((−1)^(k+1) )/k)))                   = e^( ln(2)) = 2
Pn=e(1112)+(1314)++(1n11n)=e(112+1314++1n11n)=enk=1(1)k+1kP=limn(enk=1(1)k+1k)=elimn(nk=1(1)k+1k)=eln(2)=2

Leave a Reply

Your email address will not be published. Required fields are marked *