Question Number 27996 by JI Siam last updated on 18/Jan/18
$$\mathrm{p},\mathrm{q}\:\mathrm{are}\:\mathrm{two}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{and}\: \\ $$$$\:\frac{\mathrm{p}^{\mathrm{6}} +\mathrm{2p}^{\mathrm{4}} +\mathrm{4p}^{\mathrm{2}} }{\mathrm{p}^{\mathrm{9}} −\mathrm{8p}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4q}}=\frac{\mathrm{5}}{\mathrm{6q}}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum} \\ $$$$\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:\mathrm{p}+\mathrm{q} \\ $$
Answered by prakash jain last updated on 18/Jan/18
$$\:\frac{\mathrm{p}^{\mathrm{6}} +\mathrm{2p}^{\mathrm{4}} +\mathrm{4p}^{\mathrm{2}} }{\mathrm{p}^{\mathrm{9}} −\mathrm{8p}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4q}}=\frac{\mathrm{5}}{\mathrm{6q}}, \\ $$$$\frac{{p}^{\mathrm{2}} \left({p}^{\mathrm{4}} +\mathrm{2p}^{\mathrm{2}} +\mathrm{4}\right)}{{p}^{\mathrm{3}} \left({p}^{\mathrm{6}} −\mathrm{2}^{\mathrm{3}} \right)}=\frac{\mathrm{5}}{\mathrm{6}{q}}+\frac{\mathrm{1}}{\mathrm{4}{q}} \\ $$$$\frac{\left({p}^{\mathrm{4}} +\mathrm{2p}^{\mathrm{2}} +\mathrm{4}\right)}{{p}\left({p}^{\mathrm{2}} −\mathrm{2}\right)\left({p}^{\mathrm{4}} +\mathrm{2}{p}^{\mathrm{2}} +\mathrm{4}\right)}=\frac{\mathrm{13}}{\mathrm{12}{q}} \\ $$$${q}=\frac{\mathrm{13}}{\mathrm{12}}{p}\left({p}^{\mathrm{2}} −\mathrm{2}\right) \\ $$$${p}\left({p}^{\mathrm{2}} −\mathrm{2}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{12}\: \\ $$$${p}=\mathrm{6}\:\mathrm{q}=\frac{\mathrm{13}}{\mathrm{2}}\left(\mathrm{6}^{\mathrm{2}} −\mathrm{2}\right) \\ $$
Commented by prakash jain last updated on 18/Jan/18
$$\mathrm{p}=\mathrm{13},\mathrm{q}=\mathrm{12}\left(\mathrm{13}^{\mathrm{2}} −\mathrm{2}\right) \\ $$
Commented by JI Siam last updated on 18/Jan/18
$$\mathrm{i}\:\mathrm{think}\:\mathrm{p}=\mathrm{12},\mathrm{q}=\mathrm{13}\left(\mathrm{12}^{\mathrm{2}} −\mathrm{2}\right)\:\mathrm{sir} \\ $$
Commented by prakash jain last updated on 18/Jan/18
$$\mathrm{thanks}.\:\mathrm{corrected}\:\mathrm{p}=\mathrm{6} \\ $$